Serum and hepatic vitamin A levels in captive and wild marine toads (Bufo marinus)

Zoo Biology ◽  
2014 ◽  
Vol 33 (6) ◽  
pp. 536-543 ◽  
Author(s):  
Charlene N. Berkvens ◽  
Andrew Lentini ◽  
Christopher J. Dutton ◽  
David L. Pearl ◽  
Ian K. Barker ◽  
...  
Keyword(s):  
1987 ◽  
Vol 65 (4) ◽  
pp. 884-887 ◽  
Author(s):  
A. J. Sillman

The blue-sensitive visual pigment of the green rods of Bufo marinus was extracted with digitonin. The pigment is present in an amount equal to about 11% that of rhodopsin. It is based on vitamin A1 and exhibits a maximum absorbance of 433 nm. The pigment is labile and readily destroyed by hydroxylamine, regenerates to a much greater degree than does rhodopsin, and is more effectively extracted from the membrane than is rhodopsin. The green rod pigment of Bufo marinus appears to share the same physical and chemical properties as the green rod pigments of other amphibians. Therefore, the results of electrophysiological studies on the green rods of Bufo marinus can be more confidently generalized to other species. The results are discussed in terms of the blue phototaxis that is characteristic of many amphibians.


Author(s):  
Odell T. Minick ◽  
Hidejiro Yokoo ◽  
Fawzia Batti

Vacuolated cells in the liver of young rats were studied by light and electron microscopy following the administration of vitamin A (200 units per gram of body weight). Their characteristics were compared with similar cells found in untreated animals.In rats given vitamin A, cells with vacuolated cytoplasm were a prominent feature. These cells were found mostly in a perisinusoidal location, although some appeared to be in between liver cells (Fig. 1). Electron microscopy confirmed their location in Disse's space adjacent to the sinusoid and in recesses between liver cells. Some appeared to be bordering the lumen of the sinusoid, but careful observation usually revealed a tenuous endothelial process separating the vacuolated cell from the vascular space. In appropriate sections, fenestrations in the thin endothelial processes were noted (Fig. 2, arrow).


Author(s):  
J.C.S. Kim ◽  
M.G. Jourden ◽  
E.S. Carlisle

Chronic exposure to nitrogen dioxide in rodents has shown that injury reaches a maximum after 24 hours, and a reparative adaptive phase follows (1). Damage occurring in the terminal bronchioles and proximal portions of the alveolar ducts in rats has been extensively studied by both light and electron microscopy (1).The present study was undertaken to compare the response of lung tissue to intermittent exposure to 10 ppm of nitrogen dioxide gas for 4 hours per week, while the hamsters were on a vitamin A deficient diet. Ultrastructural observations made from lung tissues obtained from non-gas exposed, hypovitaminosis A animals and gas exposed animals fed a regular commercially prepared diet have been compared to elucidate the specific effect of vitamin A on nitrogen dioxide gas exposure. The interaction occurring between vitamin A and nitrogen dioxide gas has not previously been investigated.


1958 ◽  
Vol 35 (4) ◽  
pp. 381-386 ◽  
Author(s):  
Sidney M. Fierst ◽  
Saul M. Feldman ◽  
Nathan Solomon ◽  
Abraham Lanosam
Keyword(s):  

1952 ◽  
Vol 20 (4) ◽  
pp. 587-594 ◽  
Author(s):  
Frederick Steigmann ◽  
Hans Popper ◽  
Hattie Dyniewicz ◽  
Irene Maxwell

1950 ◽  
Vol 34 (2) ◽  
pp. 413-424 ◽  
Author(s):  
J.M. Lewis ◽  
Sidney Q. Cohlan
Keyword(s):  

Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Sign in / Sign up

Export Citation Format

Share Document