Mechanism of Free Radical-Induced Hemolysis of Human Erythrocytes: Comparison of Calculated Rate Constants for Hemolysis with Experimental Rate Constants

1999 ◽  
Vol 366 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Yukio Sato ◽  
Keiko Sato ◽  
Yasuo Suzuki
1998 ◽  
Vol 21 (3) ◽  
pp. 250-256 ◽  
Author(s):  
Yukio SATO ◽  
Sachiko KANAZAWA ◽  
Keiko SATO ◽  
Yasuo SUZUKI

1989 ◽  
Vol 259 (3) ◽  
pp. 893-896 ◽  
Author(s):  
C E King ◽  
P T Hawkins ◽  
L R Stephens ◽  
R H Michell

When intact human erythrocytes are incubated at metabolic steady state in a chloride-free medium containing [32P]Pi, there is rapid labelling of the gamma-phosphate of ATP, followed by a slower labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] [King, Stephens, Hawkins, Guy & Michell (1987) Biochem. J. 244, 209-217]. We have analysed the early kinetics of the labelling of these phosphate groups, in order to determine: (a) the steady-state rates of the interconversions of phosphatidylinositol, PtdIns4P and PtdIns(4,5)P2; and (b) the fractions of the total cellular complement of PtdIns4P and PtdIns(4,5)P2 that participate in this steady-state turnover. The experimental data most closely fit a pattern of PtdIns4P and PtdIns(4,5)P2 turnover in which one-quarter of the total cellular complement of each lipid is in the metabolic pool that participates in rapid metabolic turnover, with rate constants of 0.028 min-1 for the interconversion of PtdIns and PtdIns4P, and of 0.010 min-1 for the PtdIns4P/PtdIns(4,5)P2 cycle. These rate constants represent metabolic fluxes of approx. 2.1 nmol of lipid/h per ml of packed erythrocytes between PtdIns and PtdIns4P and of approx. 5.7 nmol/h per ml of cells between PtdIns4P and PtdIns(4,5)P2.


1980 ◽  
Vol 188 (2) ◽  
pp. 535-540 ◽  
Author(s):  
A Tomoda ◽  
M Ida ◽  
A Tsuji ◽  
Y Yoneyama

The time course of methaemoglobin reduction in human erythrocytes treated with nitrite was studied at pH 7.4, 37 degrees C, in the presence or absence of Methylene Blue, and the changes in methaemoglobin, intermediate haemoglobins and oxyhaemoglobin during the reaction were analysed by isoelectric-focusing on Ampholine/polyacrylamide-gel plates. In both cases, with or without the dye, the intermediate haemoglobins were found to be present at (alpha 3+beta 2+)2 and (alpha 2+beta 3+)2 valency hybrids from their characteristic position on electrophoresis, but amounts changed consecutively with time. The amount of (alpha 3+beta 2+)2 was always greater than that of the (alpha 2+beta 3+)2 valency hybrid. This result is explained by the differences in redox potentials between alpha- and beta-chains in methaemoglobin tetramer. It was concluded that methaemoglobin was reduced in human erythrocytes through these two different pats: methaemoglobin leads to k+3 (alpha 2+beta 3+)2 leads to k+3 oxyhaemoglobin. The reaction rate constants k'+1 (= k+1+k+3) and k'+2(=k+2+k+4) were estimated from the changes in each component methaemoglobin, intermediate haemoglobins [(alpha 3+beta 2+)2+(alpha 2+beta 3+)2] and oxyhaemoglobin.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4266
Author(s):  
Magdalena Woźniak ◽  
Lucyna Mrówczyńska ◽  
Patrycja Kwaśniewska-Sip ◽  
Agnieszka Waśkiewicz ◽  
Piotr Nowak ◽  
...  

Propolis is a natural bee product with various beneficial biological effects. The health-promoting properties of propolis depend on its chemical composition, particularly the presence of phenolic compounds. The aim of this study was to evaluate the relationship between extraction solvent (acetone 100%, ethanol 70% and 96%) and the antifungal, antioxidant, and cytoprotective activity of the extracts obtained from propolis. Concentrations of flavonoids and phenolic acids in the propolis extracts were determined using ultrahigh-performance liquid chromatography. The antioxidant potential of different extracts was assessed on the basis of 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free-radical-scavenging activity, Fe3+-reducing power, and ferrous ion (Fe2+)-chelating activity assays. The ability of the extracts to protect human red blood cell membranes against free-radical-induced damage and their antifungal activity was also determined. The results showed that the concentration of flavonoids in the propolis extracts was dependent on the solvent used in the extraction process and pinocembrin, chrysin, galangin, and coumaric acid were the most abundant phenols. All extracts exhibited high antioxidant potential and significantly protected human erythrocytes against oxidative damage. On the other hand, the antifungal activity of the propolis extracts depended on the solvent used in extraction and the fungal strains tested. It needs to be stressed that, to the best of our knowledge, there is no study relating the effect of solvent used for extraction of Polish propolis to its phenolic profile, and its antifungal, antioxidant, and cytoprotective activity.


1982 ◽  
Vol 60 (20) ◽  
pp. 2566-2572 ◽  
Author(s):  
J. A. Howard ◽  
J. H. B. Chenier ◽  
T. Yamada

The major products of the self-reaction of 1,1-diphenylethylperoxyl have been determined from product studies of the autoxidation of 1,1-diphenylethane, induced decomposition of 1,1-diphenylethyl hydroperoxide, and decomposition of 2,2,3,3-tetraphenylbutane under an atmosphere of oxygen. Overall self-reaction is a complex free-radical process involving the intermediacy of 1,1-diphenylethoxyl and 1-phenyl-1-phenoxyethoxyl which undergo H-atom abstraction, β-scission and, in the case of the former radical, rearrangement. Hydroperoxide decomposition under an atmosphere of 36O2 has shown that 1,1-diphenylethylperoxyl undergoes β-scission faster than α-cumylperoxyl at 303 K in solution. The values of the rate constants for self-reaction of Ph2C(Me)O2• relative to those for tert-butylperoxyl are, however, not affected by this reaction. Furthermore they are not affected to any appreciable extent by the efficiency with which Ph2C(Me)O•, formed in nonterminating self-reactions, escape from the solvent cage. They are influenced principally by the first-order rate of decomposition of Ph2C(Me)OOOOC(Me)Ph2.


2018 ◽  
Vol 191 ◽  
pp. 252-269 ◽  
Author(s):  
Yann Fenard ◽  
Adrià Gil ◽  
Guillaume Vanhove ◽  
Hans-Heinrich Carstensen ◽  
Kevin M. Van Geem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document