The Transmitting Tissue in Brugmansia suaveolens L.: Ultrastructure of the Stylar Transmitting Tissue

1993 ◽  
Vol 71 (2) ◽  
pp. 177-186 ◽  
Author(s):  
J Hudák
Cell ◽  
1995 ◽  
Vol 82 (3) ◽  
pp. 383-393 ◽  
Author(s):  
Alice Y Cheung ◽  
Hong Wang ◽  
Hen-ming Wu

2016 ◽  
Vol 76 (1) ◽  
pp. 233-244 ◽  
Author(s):  
F. M. Martins ◽  
I. L. Cunha-Neto ◽  
T. M. Pereira

Abstract The morphology and anatomy of the flower of Dalechampia alata, as well as the chemical nature of the exudates secreted in the inflorescence were studied using light microscope. This is the first report showing the presence of colleters in the genus Dalechampia. In the staminate flower occur a group of small secretory glands. The histochemical results indicate that the substance secreted from the glands is lipidic and resinuous in nature, while in the colleters it consists of polysaccharides and lipid-rich substances. The ovule of D. alata are anatropous, subglobose and bitegmic. It presents obturator, micropyle occluded by nucellar beak and meristematic activity in the ovary wall. The secretion produced in the stigmatic and transmitting tissue consists of polysaccharides.


Author(s):  
Natalí Hernández-Ciro ◽  
Natalia Pabón-Mora

Background. The mechanisms controlling evolutionary shifts between dry and fleshy fruits in angiosperms are poorly understood. In Solanaceae, Cestrum and Brugmansia represent cases of convergent evolution of fleshy and dry fruits, respectively. Here we study the anatomical and genetic bases of the independent origin of fleshy fruits in Cestrum and the reversion to dry dehiscent fruits in Brugmansia. We also characterize the expression of candidate fruit development genes, including ALCATRAZ/SPATULA, FRUITFULL, HECATE1/2/3, REPLUMLESS and SHATTERPROOF.Methods. We identify anatomical changes to establish developmental stages in the ovary-to-fruit transition in Cestrum nocturnum and Brugmansia suaveolens. We generate reference transcriptomes for both species, isolate homologs for all genes in the fruit genetic regulatory network (GRN) and perform gene expression analyses for ALC/SPT, FUL, HEC1/2/3, RPL and SHP throughout fruit development. Finally, we compare our results to expression patterns found in typical capsules of Nicotiana tabacum and berries of Solanum lycopersicum available in public repositories.Results. We have identified homologous, homoplasious and unique anatomical features in C.nocturnum and B. suaveolens fruits, resulting in their final appearance. Expression patterns suggest that FUL, SHP and SPT might control homologous characteristics, while ALC and RPL likely contribute to homoplasious anatomical features.Conclusions. The convergent anatomical features in Cestrum and Brugmansia fruits are likely the result of changes in ALC and RPL expression patterns. The fruit GRN changes considerably in these genera when compared to typical capsules and berries of Solanaceae, particularly in B. suaveolens, where expression of FUL2 and RPL1 is lacking.


2020 ◽  
Vol 195 (1) ◽  
pp. 93-105
Author(s):  
Simone P Teixeira ◽  
Marina F B Costa ◽  
João Paulo Basso-Alves ◽  
Finn Kjellberg ◽  
Rodrigo A S Pereira

Abstract The synstigma is a structure formed by clusters of two to several stigmas, whether in the same or between different flowers. Although rare in angiosperms, synstigmas are found in c. 500 out of the c. 750 Ficus spp. (Moraceae). This floral structure is associated with fig-fig wasp pollinating mutualism. The synstigma structure and pollen tube pathways were studied in six Ficus spp. from Ficus section Americanae to test the hypothesis that the synstigma allows pollen grains deposited on a stigma to emit pollen tubes that can grow laterally and fertilize surrounding flowers. Syconia containing recently pollinated stigmas were collected and dissected, and the stigmas were processed for analyses with light and scanning and transmission electron microscopy. The arrangement of the synstigmas across species can be spaced or congested, with the number of stigmas per synstigma ranging from two to 20. Contact between the stigmas in a synstigma occurs by the intertwining of the stigmatic branches and papillae; their union is firm or loose. The pollen tube grows through live cells of the transmitting tissue until reaching the ovule micropyle. Curved pollen tubes growing from one stigma to another were observed in five out of the six species studied. The curvilinear morphology of pollen tubes probably results from competition by pollen between the stigmas composing a synstigma via chemotropic signals. The synstigma appears to be a key adaptation that ensures seed production by flowers not exploited by the fig wasps in actively pollinated Ficus spp.


Sign in / Sign up

Export Citation Format

Share Document