meristematic activity
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 10)

H-INDEX

20
(FIVE YEARS 1)

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 540
Author(s):  
Xing Pu ◽  
Xiaochun Wang ◽  
Lixin Lyu

Identifying what determines the high elevation limits of tree growth is crucial for predicting how treelines may shift in response to climate change. Treeline formation is either explained by a low-temperature restriction of meristematic activity (sink limitation) or by the photosynthetic constraints (source limitation) on the trees at the treeline. Our study of tree-ring stable isotopes in two Tibetan elevational transects showed that treeline trees had higher iWUE than trees at lower elevations. The combination of tree-ring δ13C and δ18O data further showed that photosynthesis was higher for trees at the treeline than at lower elevations. These results suggest that carbon acquisition may not be the main determinant of the upper limit of trees; other processes, such as immature tissue growth, may be the main cause of treeline formation. The tree-ring isotope analysis (δ13C and δ18O) suggests that Tibetan treelines have the potential to benefit from ongoing climate warming, due to their ability to cope with co-occurring drought stress through enhanced water use efficiency.


2021 ◽  
Author(s):  
Luojiang Huang ◽  
Kai Hua ◽  
Ran Xu ◽  
Dali Zeng ◽  
Ruci Wang ◽  
...  

Abstract Panicle size and grain number are important agronomic traits and influence grain yield in rice (Oryza sativa), but the molecular and genetic mechanisms underlying panicle size and grain number control remain largely unknown in crops. Here we report that LARGE2 encodes a HECT-domain E3 ubiquitin ligase OsUPL2 and regulates panicle size and grain number in rice. The loss of function large2 mutants produce large panicles with increased grain number, wide grains and leaves, and thick culms. LARGE2 regulates panicle size and grain number by repressing meristematic activity. LARGE2 is highly expressed in young panicles and grains. Biochemical analyses show that LARGE2 physically associates with ABERRANT PANICLE ORGANIZATION1 (APO1) and APO2, two positive regulators of panicle size and grain number, and modulates their stabilities. Genetic analyses support that LARGE2 functions with APO1 and APO2 in a common pathway to regulate panicle size and grain number. These findings reveal a novel genetic and molecular mechanism of the LARGE2-APO1/APO2 module-mediated control of panicle size and grain number in rice, suggesting that this module is a promising target for improving panicle size and grain number in crops.


2021 ◽  
Author(s):  
Aurélia Emonet ◽  
Feng Zhou ◽  
Jordan Vacheron ◽  
Clara Margot Heiman ◽  
Valérie Dénervaud Tendon ◽  
...  

IAWA Journal ◽  
2020 ◽  
pp. 1-14
Author(s):  
Kishore S. Rajput ◽  
Amit D. Gondaliya ◽  
Himansu Baijnath

Abstract Members of the Convolvulaceae are characterized by the climbing habit and occurrence of variant secondary growth. From a histological perspective, the genus Ipomoea L. is the most extensively studied, while other genera have been less studied. Here, stem anatomy of the least studied genus in the family, Hewittia Wight & Arn., represented by Hewittia malabarica (L.) Suresh was investigated using classical histological techniques. In both the samples collected from India and South Africa, stem thickness increased by developing different types of cambial variants such as: neo-formed vascular cylinders, parenchyma proliferation at the phloem wedges, ray-derived cambia from dilating phloem rays, internal cambium, intra- and interxylary phloem. Neo-formed vascular cylinders develop from the parenchyma cells external to the phloem as a meristemoid in thick stems and later in dilating ray cells. With the increase in stem diameter, cells of the phloem wedges showed proliferation by meristematic activity, which form a connection with the cortex by rupturing the primary tissue ring of eustele. Subsequently, development of cambium in phloem wedges and deposition of its derivatives increased the tangential width of rays. Mature thick stems (25–30 mm) give rise to a fissured stem. Intraxylary (internal) phloem development on the pith margin was observed from primary growth onwards and in thick stems secondary intraxylary phloem developed from the internal cambium. Internal cambium is functionally bidirectional and produces secondary xylem internally and secondary phloem externally. In all the samples, patches of unlignified parenchyma embedded within the secondary xylem dedifferentiate and mature into interxylary phloem with the increasing age. Development of cambial variant and structure of the secondary xylem is correlated with the functional significance of the climbing habit.


2020 ◽  
Vol 6 (44) ◽  
pp. eabc2385
Author(s):  
Songkui Cui ◽  
Tomoya Kubota ◽  
Tomoaki Nishiyama ◽  
Juliane K. Ishida ◽  
Shuji Shigenobu ◽  
...  

Parasitic plants form a specialized organ, a haustorium, to invade host tissues and acquire water and nutrients. To understand the molecular mechanism of haustorium development, we performed a forward genetics screening to isolate mutants exhibiting haustorial defects in the model parasitic plant Phtheirospermum japonicum. We isolated two mutants that show prolonged and sometimes aberrant meristematic activity in the haustorium apex, resulting in severe defects on host invasion. Whole-genome sequencing revealed that the two mutants respectively have point mutations in homologs of ETHYLENE RESPONSE 1 (ETR1) and ETHYLENE INSENSITIVE 2 (EIN2), signaling components in response to the gaseous phytohormone ethylene. Application of the ethylene signaling inhibitors also caused similar haustorial defects, indicating that ethylene signaling regulates cell proliferation and differentiation of parasite cells. Genetic disruption of host ethylene production also perturbs parasite invasion. We propose that parasitic plants use ethylene as a signal to invade host roots.


2020 ◽  
Author(s):  
Jianxin Wu ◽  
Jun Long ◽  
Xianhui Lin ◽  
Zhenyi Chang ◽  
Scott R. Baerson ◽  
...  

AbstractIn competition for limited resources, many plants release allelochemicals to inhibit the growth of neighboring plants. Momilactone B (MB) is a major allelochemical produced by rice (Oryza sativa), however its mode of action is currently unknown. We used Arabidopsis (Arabidopsis thaliana) as a model system to evaluate potential mechanisms underlying the inhibitory effects of MB on seed germination, seedling establishment and root growth through the use of confocal microscopy and the examination of transcriptional responses in MB-treated seedlings. In response to MB treatment, transcript levels for genes encoding several key ABA biosynthetic enzymes and signaling components, including the transcription factor ABA-INSENSITIVE 4 (ABI4), were dramatically increased. Additionally, ABA insensitive 4 (abi4) mutant seedlings exhibited reduced susceptibility to exogenously-provided MB. Although the transcript levels of DELLA genes, which negatively regulate GA signaling, were significantly increased upon MB exposure, exogenous GA application did not reverse the inhibitory effects of MB on Arabidopsis germination and seedling development. Moreover, a reduction in seedling root meristematic activity, associated with reduced expression of auxin biosynthetic genes and efflux transporters, and apparent lowered auxin content, was observed in MB-treated root tips. Exogenous auxin applications partially rescued the inhibitory effects of MB observed in root growth. Our results indicate that MB suppresses Arabidopsis seed germination and root growth primarily via disruption of ABA and auxin signaling. These findings underscore the crucial roles played by phytohormones in mediating responses to allelochemical exposure.One-sentence summaryMomilactone B, the key allelochemical of rice, inhibits Arabidopsis growth and development via disruption of ABA and auxin signaling, suggesting the crucial roles of phytohormones in plant allelopathy


Author(s):  
Aurélia Emonet ◽  
Feng Zhou ◽  
Jordan Vacheron ◽  
Clara Margot Heiman ◽  
Valérie Dénervaud Tendon ◽  
...  

SummaryPlants circumscribe microbe-associated molecular pattern (MAMP)-triggered immune responses to weak points of the roots. This spatially restricted immunity was suggested to avoid constitutive responses to rhizosphere microbiota. To demonstrate its relevance, we combined cell-type specific expression of the plant flagellin receptor (FLS2) with fluorescent defence markers and mapped immune competency at cellular resolution. Our analysis distinguishes cell-autonomous and non-cell autonomous responses and reveals lignification to be tissue-independent, contrasting cell-type specific suberisation. Importantly, our analysis divides the non-responsive meristem into a central zone refractory to FLS2 expression, and a cortex that becomes highly sensitised by FLS2 expression, causing meristem collapse upon MAMP exposure. Meristematic epidermal expression generates super-competent lines that detect native bacterial flagellin and bypass the absence of response to commensals, providing a powerful tool for studying root immunity. Our precise manipulations and read-outs demonstrate incompatibility of meristematic activity and defence and the importance of cell-resolved studies of plant immunity.


HortScience ◽  
2020 ◽  
Vol 55 (2) ◽  
pp. 204-207
Author(s):  
Huanfang Liu ◽  
Chelsea D. Specht ◽  
Tong Zhao ◽  
Jingping Liao

The morphological anatomy of leaf and rhizome was studied at different developmental stages in Zingiber officinale Roscoe using both light and electron microscopy, with an emphasis on characterizing secretory structures. The results show that the leaf comprises epidermal cells, mesophyll cells, and vascular bundles. Oil and crystal cells are scattered throughout the parenchyma, and some are within or in close contact to the vascular bundle sheath. The rhizome consists of epidermis, cortex, and stele. The pericycle of the rhizome remains meristematic and produces tissues centripetally, whereas the endodermis has no meristematic activity. Starch grains vary in shape from round to oval and vary in size from small to large throughout rhizome development. Oil cells and cavities are scattered and cavities are of lysigenous origin. When mature, the starch grains decrease in abundance while an increasing number of oil cells and cavities are formed. This anatomic characterization provides a theory foundation for medicinal exploitation and utilization of Z. officinale Roscoe.


2020 ◽  
Vol 47 (12) ◽  
pp. 1019 ◽  
Author(s):  
Nikolai C. Macnee ◽  
Ria Rebstock ◽  
Ian C. Hallett ◽  
Robert J. Schaffer ◽  
Sean M. Bulley

The outer skin layer in any plant is essential in offering a protective barrier against water loss and pathogen attack. Within fleshy fruit, the skin supports internal cell layers and can provide the initial cues in attracting seed-dispersing animals. The skin of a fruit, termed the exocarp, is a key element of consumer preference and a target for many breeding programs. Across fruiting species there is a huge diversity of exocarp types and these range from a simple single living cell layer (epidermis) often covered with a waxy layer, to complex multicellular suberised and dead cell layers (periderm), with various intermediate russet forms in between. Each exocarp can be interspersed with other structures such as hairs or spines. The epidermis has been well characterised and remains pluripotent with the help of the cells immediately under the epidermis. The periderm, in contrast, is the result of secondary meristematic activity, which replaces the epidermal layers, and is not well characterised in fruits. In this review we explore the structure, composition and mechanisms that control the development of a periderm type fruit exocarp. We draw upon literature from non-fleshy fruit species that form periderm tissue, from which a considerable amount of research has been undertaken.


Sign in / Sign up

Export Citation Format

Share Document