scholarly journals Salinity Effects on the Activity of Plasma Membrane H+and Ca2+Transporters in Bean Leaf Mesophyll: Masking Role of the Cell Wall

2000 ◽  
Vol 85 (5) ◽  
pp. 681-686 ◽  
Author(s):  
S Shabala
Author(s):  
A.R. Hardham ◽  
B.E.S. Gunning

Microtubules in the plant cell cortex are usually aligned parallel to microfibrils of cellulose that are being deposited in the cell wall, and are considered to function in guiding or orienting cellulose synthetase complexes that lie in or on the plasma membrane. The cellulose component is largely responsible for the mechanical reaction of the wall to turgor forces, thereby determining cell size and shape, and therefore the role of the cortical microtubules is a fundamental part of the overall morphogenetic process in plants. It is important to determine the structure of cortical arrays of microtubules and to learn how the cell regulates their development, neither of these aspects having been investigated adequately since the original description likened the microtubules to “hundreds of hoops around the cell”.


2012 ◽  
Vol 11 (8) ◽  
pp. 966-977 ◽  
Author(s):  
Jarrod R. Fortwendel ◽  
Praveen R. Juvvadi ◽  
Luise E. Rogg ◽  
Yohannes G. Asfaw ◽  
Kimberlie A. Burns ◽  
...  

ABSTRACT Ras is a highly conserved GTPase protein that is essential for proper polarized morphogenesis of filamentous fungi. Localization of Ras proteins to the plasma membrane and endomembranes through posttranslational addition of farnesyl and palmitoyl residues is an important mechanism through which cells provide specificity to Ras signal output. Although the Aspergillus fumigatus RasA protein is known to be a major regulator of growth and development, the membrane distribution of RasA during polarized morphogenesis and the role of properly localized Ras signaling in virulence of a pathogenic mold remain unknown. Here we demonstrate that Aspergillus fumigatus RasA localizes primarily to the plasma membrane of actively growing hyphae. We show that treatment with the palmitoylation inhibitor 2-bromopalmitate disrupts normal RasA plasma membrane association and decreases hyphal growth. Targeted mutations of the highly conserved RasA palmitoylation motif also mislocalized RasA from the plasma membrane and led to severe hyphal abnormalities, cell wall structural changes, and reduced virulence in murine invasive aspergillosis. Finally, we provide evidence that proper RasA localization is independent of the Ras palmitoyltransferase homolog, encoded by erfB , but requires the palmitoyltransferase complex subunit, encoded by erfD . Our results demonstrate that plasma membrane-associated RasA is critical for polarized morphogenesis, cell wall stability, and virulence in A. fumigatus .


2014 ◽  
Vol 25 (5) ◽  
pp. 679-687 ◽  
Author(s):  
Roshni Basu ◽  
Emilia Laura Munteanu ◽  
Fred Chang

Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane.


2018 ◽  
Vol 19 (9) ◽  
pp. 2674 ◽  
Author(s):  
Derek Lamport ◽  
Li Tan ◽  
Michael Held ◽  
Marcia Kieliszewski

Morphogenesis remains a riddle, wrapped in a mystery, inside an enigma. It remains a formidable problem viewed from many different perspectives of morphology, genetics, and computational modelling. We propose a biochemical reductionist approach that shows how both internal and external physical forces contribute to plant morphogenesis via mechanical stress–strain transduction from the primary cell wall tethered to the plasma membrane by a specific arabinogalactan protein (AGP). The resulting stress vector, with direction defined by Hechtian adhesion sites, has a magnitude of a few piconewtons amplified by a hypothetical Hechtian growth oscillator. This paradigm shift involves stress-activated plasma membrane Ca2+ channels and auxin-activated H+-ATPase. The proton pump dissociates periplasmic AGP-glycomodules that bind Ca2+. Thus, as the immediate source of cytosolic Ca2+, an AGP-Ca2+ capacitor directs the vectorial exocytosis of cell wall precursors and auxin efflux (PIN) proteins. In toto, these components comprise the Hechtian oscillator and also the gravisensor. Thus, interdependent auxin and Ca2+ morphogen gradients account for the predominance of AGPs. The size and location of a cell surface AGP-Ca2+ capacitor is essential to differentiation and explains AGP correlation with all stages of morphogenetic patterning from embryogenesis to root and shoot. Finally, the evolutionary origins of the Hechtian oscillator in the unicellular Chlorophycean algae reflect the ubiquitous role of chemiosmotic proton pumps that preceded DNA at the dawn of life.


2017 ◽  
Vol 474 (4) ◽  
pp. 471-492 ◽  
Author(s):  
Sebastian Wolf

Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed.


Author(s):  
Derek T Lamport ◽  
Li Tan ◽  
Michael Held ◽  
Marcia J. Kieliszewski

Morphogenesis remains a riddle, wrapped in a mystery, inside an enigma. It remains a formidable problem viewed from many different perspectives of morphology, genetics, and computational modelling. We propose a biochemical reductionist approach that shows how both internal and external physical forces contribute to plant morphogenesis via mechanical stress-strain transduction from the primary cell wall tethered to the plasma membrane by a specific arabinogalactan protein (AGP). The resulting stress vector with direction defined by Hechtian adhesion sites, has a magnitude of a few picoNewtons amplified by a hypothetical Hechtian growth oscillator. This paradigm shift involves stress activated plasma membrane Ca2+channels and auxin-activated H+-ATPase. The proton pump dissociates periplasmic AGP-glycomodules that bind Ca2+. Thus, as the immediate source of cytosolic Ca2+ an AGP-Ca2+ capacitor directs vectorial exocytosis of cell wall precursors and auxin efflux (PIN) proteins. In toto these components comprise the Hechtian Oscillator and also the gravisensor. Thus interdependent auxin and Ca2+ morphogen gradients account for the predominance of AGPs. The size and location of a cell surface AGP-Ca2+ capacitor is essential to differentiation and explains AGP correlation with all stages of morphogenetic patterning from embryogenesis to root and shoot. Finally, evolutionary origins of the Hechtian Oscillator in the unicellular Chlorophycean algae reflect the ubiquitous role of chemiosmotic proton pumps that preceded DNA at the dawn of life.


2013 ◽  
Vol 203 (2) ◽  
pp. 265-282 ◽  
Author(s):  
Javier Muñoz ◽  
Juan Carlos G. Cortés ◽  
Matthias Sipiczki ◽  
Mariona Ramos ◽  
José Angel Clemente-Ramos ◽  
...  

Cytokinesis has been extensively studied in different models, but the role of the extracellular cell wall is less understood. Here we studied this process in fission yeast. The essential protein Bgs4 synthesizes the main cell wall β(1,3)glucan. We show that Bgs4-derived β(1,3)glucan is required for correct and stable actomyosin ring positioning in the cell middle, before the start of septum formation and anchorage to the cell wall. Consequently, β(1,3)glucan loss generated ring sliding, oblique positioned rings and septa, misdirected septum synthesis indicative of relaxed rings, and uncoupling between a fast ring and membrane ingression and slow septum synthesis, suggesting that cytokinesis can progress with defective septum pushing and/or ring pulling forces. Moreover, Bgs4-derived β(1,3)glucan is essential for secondary septum formation and correct primary septum completion. Therefore, our results show that extracellular β(1,3)glucan is required for cytokinesis to connect the cell wall with the plasma membrane and for contractile ring function, as proposed for the equivalent extracellular matrix in animal cells.


Sign in / Sign up

Export Citation Format

Share Document