ferric chelate reductase
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Abdelmajid Krouma

Calcareous soils are known problematic lands for agricultural systems because of the low availability of nutrients, particularly iron (Fe). The so-called strategy I plant (e. g. Pea, Pisum sativum L.) which groups dicotyledons and monocots other than grasses, developed root membrane activities that contribute to the improvement of Fe availability. Among the functions considered to be a critical phase in iron absorption is rhizosphere acidification by H-ATPase and Fe(III) reduced by Fe(III) chelate reducctase (FeCR). In order to experimentally investigate the importance of root FeCR in Fe nutrition, its relationship with rhizosphere acidification and the genotypic differences in response to iron deficiency in pea (Pisum sativum L.), a glasshouse experiment was conducted hydroponically on four genotypes Merveille de Kelvedon (MK); Lincoln (Lin); Douce de Provence (DP) and Alexandra (Alex). Plants of each genotype were distributed into two plots, the first one received full nutrient solution (+ Fe), the second one received nutrient solution devoid of iron (- Fe). Plant growth, Fe distribution, SPAD index and root acidification and ferric chelate reductase activities were evaluated. Fe deficiency decreased plant growth and SPAD index along with the significant increase of H-ATPase and FeCR activities. Some genotypic differences were observed as follows; Alex showed high tolerance to Fe deprivation as compared to other genotypes. Important H-ATPase and FeCR activities, high Fe use efficiency and adequate membrane efficiency are the main reasons for this tolerance. These physiological parameters could be used as tools of tolerance for further breeding programs


2021 ◽  
Vol 12 ◽  
Author(s):  
Máté Sági-Kazár ◽  
Helga Zelenyánszki ◽  
Brigitta Müller ◽  
Barnabás Cseh ◽  
Balázs Gyuris ◽  
...  

Iron (Fe) is an essential micronutrient for plants. Due to the requirement for Fe of the photosynthetic apparatus, the majority of shoot Fe content is localised in the chloroplasts of mesophyll cells. The reduction-based mechanism has prime importance in the Fe uptake of chloroplasts operated by Ferric Reductase Oxidase 7 (FRO7) in the inner chloroplast envelope membrane. Orthologue of Arabidopsis thaliana FRO7 was identified in the Brassica napus genome. GFP-tagged construct of BnFRO7 showed integration to the chloroplast. The time-scale expression pattern of BnFRO7 was studied under three different conditions: deficient, optimal, and supraoptimal Fe nutrition in both leaves developed before and during the treatments. Although Fe deficiency has not increased BnFRO7 expression, the slight overload in the Fe nutrition of the plants induced significant alterations in both the pattern and extent of its expression leading to the transcript level suppression. The Fe uptake of isolated chloroplasts decreased under both Fe deficiency and supraoptimal Fe nutrition. Since the enzymatic characteristics of the ferric chelate reductase (FCR) activity of purified chloroplast inner envelope membranes showed a significant loss for the substrate affinity with an unchanged saturation rate, protein level regulation mechanisms are suggested to be also involved in the suppression of the reduction-based Fe uptake of chloroplasts together with the saturation of the requirement for Fe.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura Marastoni ◽  
Luigi Lucini ◽  
Begoña Miras-Moreno ◽  
Marco Trevisan ◽  
Davide Sega ◽  
...  

Abstract In several cultivation areas, grapevine can suffer from Fe chlorosis due to the calcareous and alkaline nature of soils. This plant species has been described to cope with Fe deficiency by activating Strategy I mechanisms, hence increasing root H+ extrusion and ferric-chelate reductase activity. The degree of tolerance exhibited by the rootstocks has been reported to depend on both reactions, but to date, little emphasis has been given to the role played by root exudate extrusion. We studied the behaviour of two hydroponically-grown, tolerant grapevine rootstocks (Ramsey and 140R) in response to Fe deficiency. Under these experimental conditions, the two varieties displayed differences in their ability to modulate morpho-physiological parameters, root acidification and ferric chelate reductase activity. The metabolic profiling of root exudates revealed common strategies for Fe acquisition, including ones targeted at reducing microbial competition for this micronutrient by limiting the exudation of amino acids and sugars and increasing instead that of Fe(III)-reducing compounds. Other modifications in exudate composition hint that the two rootstocks cope with Fe shortage via specific adjustments of their exudation patterns. Furthermore, the presence of 3-hydroxymugenic acid in these compounds suggests that the responses of grapevine to Fe availability are rather diverse and much more complex than those usually described for Strategy I plants.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Laura Grace Murphy ◽  
Jessica Holst ◽  
Gregory Kane ◽  
Maureen J. Gorman ◽  
Emily J. Ragan

2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Salama & El Fouly

This study was aimed to compare between the effects of different chemical forms of Zn and cupper[ionic forms (CuSO4), (Zn SO4) and chelated forms of [Cu Zn (II) HEDTA and Cu (II) HEDTA], whereas, HEDTA is N-(hydroxyethyl) ethylenediamine triacetic acid, applied at micromolar concentrations in the nutrient solution] of Phaseolus Vulgaris plants grown hydroponically under conditions of iron deficiency (- Fe) were investigated. Plant variants (– Fe + 2 µM Cu2+) and (– Fe+ 20 µM Zn2+) with extremely strong chlorosis were examined for investigations to take after the recuperation of leaf greening after treatment with Cu(II)HEDTA created leaf greening in the two variations, particularly strong for the recently which created leaf, as it appeared with chlorophyll estimations. Changes of plasma membrane reductase movement (PMRA) in roots after treatment with ionic or chelated copper were followed in (+Fe) and (– Fe) plants. The results show the increment of ferric-chelate reductase action (with substrate of Fe (III) HEDTA). Then, the cupric-chelate Cu (II) HEDTA, connected at similar level in arrangements with (– Fe) plants, kept up the high encouragement of plasma membrane ferric-chelate reductase activity. It can be concluded that the treatment with Cu (II) HEDTA enhanced the development and root plasma membrane reductase activity (PMRA) and additionally iron deficiency reactions of phaseolus plants. Regard to cell compounds increase, measurements of 20 μM of Zn altogether developed the action of the protein superoxide dismutase and peroxidase.


2019 ◽  
Vol 70 (4) ◽  
pp. 359
Author(s):  
Xiaoli Tan ◽  
Xin Yang ◽  
Yinan Xie ◽  
Han Xiao ◽  
Mengjiao Liu ◽  
...  

We studied the relative efficacy of different forms of foliar iron (Fe) fertilisation on leaf re-greening in Fe-deficient, purple-fleshed sweet potato (Ipomoea batatas (L.) Lam.) varieties xuzi8 and xuzi6. Activities of ferric chelate reductase (FCR) and concentrations of Fe were measured in the leaves and roots at intervals over 5 days to quantify recovery from leaf chlorosis. Freshly expanded and chlorotic leaves were immersed in one of three different fertiliser compounds containing 9 mm Fe: FeSO4, Fe2(SO4)3, Fe(III)-EDTA. An Fe-sufficient treatment and an Fe-deficient control were included. The experiment had a completely randomised block design with five replications per treatment and was conducted in a sunlit glasshouse. For variety xuzi8, leaf FCR activity in the Fe2(SO4)3 treatment was highest at 1 h after application, and higher than all other treatments, whereas FeSO4 and Fe(III)-EDTA treatments showed their highest FCR at day 5 after application, both significantly higher than the Fe2(SO4)3 and control treatments. Furthermore, leaf Fe concentration reached a maximum in the FeSO4 treatment at day 1, and in the Fe2(SO4)3 treatment at day 3. By contrast, root Fe concentration was relatively constant and lower in the foliar Fe treatments than the Fe-sufficient and -deficient treatments. For variety xuzi6, leaf SPAD was higher with the Fe2(SO4)3 than the FeSO4 treatment at day 5 after application. In general, FCR activity and Fe concentrations in roots and leaves of xuzi6 were higher than those of xuzi8. Variations in leaf Fe concentrations were similar for both the FeSO4 and Fe2(SO4)3 treatments of the two varieties. Maximum leaf Fe levels in xuzi6 were ~4-fold those in xuzi8. The results of the study suggest that foliar-applied Fe2(SO4)3 was the most effective compound at correcting Fe-deficiency symptoms. The higher leaf and root FCR activity and Fe concentration in xuzi6 might explain its higher tolerance to Fe deficiency and better re-greening than xuzi8.


Author(s):  
Joao Graca Martins ◽  
Clara Martin, Lourdes Apaolaza ◽  
Maria Teresa Barros ◽  
Helena Maria Vieira Monteiro Soares ◽  
Juan Jose Lucena

Environmental concerns related to the use of synthetic iron chelates, usually non-biodegradable, for overcoming iron chlorosis motivates the search for alternative compounds. Thus, the main aim of this work was to evaluate siderophore, azotochelin, and a siderophore mimic, N-dihydroxy-N,N’-diisopropylhexanediamide (DPH) as potential sources of iron to cucumber plants grown in hydroponic cultures. The behavior of the iron chelates of azotochelin and DPH, as a substrate of ferric chelate reductase (FCR) and the ability as iron suppliers for chlorotic plants was studied and compared with o,o-EDDHA/Fe3+ and EDTA/Fe3+ chelates, traditionally used for this purpose. The rate of reduction of DPH/Fe3+, by FCR, was comparable to o,o-EDDHA/Fe3+ but lesser than the obtained for EDTA/Fe+3. The rate of reduction for azotochelin/Fe3+ was not possible to determine. Both azotochelin/Fe3+ and DPH/Fe3+ chelates were effective in supplying iron to cucumber plants. After 7 and 21 days, all the plants treated with the iron chelates (10 µM, Fe) of DPH and azotochelin showed significantly higher SPAD index, leaf dry weight and leaf Fe concentration than the control plants (2µM, Fe). In conclusion, azotochelin/Fe3+ and DPH/Fe3+ can be considered as iron sources for cucumber plants when growing in hydroponic culture.


Sign in / Sign up

Export Citation Format

Share Document