scholarly journals External Pressures Based on Leaf Water Potentials Do Not Induce Xylem Sap to Flow at Rates of Whole Plant Transpiration from Roots of Flooded or Well-drained Tomato and Maize Plants. Impact of Shoot Hydraulic Resistances

2000 ◽  
Vol 86 (3) ◽  
pp. 665-674 ◽  
Author(s):  
A Tiekstra
2004 ◽  
Vol 31 (9) ◽  
pp. 903 ◽  
Author(s):  
Ian C. Dodd ◽  
Chuong Ngo ◽  
Colin G. N. Turnbull ◽  
Christine A. Beveridge

The rms2 and rms4 pea (Pisum sativum L.) branching mutants have higher and lower xylem-cytokinin concentration, respectively, relative to wild type (WT) plants. These genotypes were grown at two levels of nitrogen (N) supply for 18–20 d to determine whether or not xylem-cytokinin concentration (X-CK) or delivery altered the transpiration and leaf growth responses to N deprivation. Xylem sap was collected by pressurising de-topped root systems. As sap-flow rate increased, X-CK declined in WT and rms2, but did not change in rms4. When grown at 5.0 mm N, X-CKs of rms2 and rms4 were 36% higher and 6-fold lower, respectively, than WT at sap-flow rates equivalent to whole-plant transpiration. Photoperiod cytokinin (CK) delivery rates (the product of transpiration and X-CK) decreased more than 6-fold in rms4. Growth of plants at 0.5 mm N had negligible (< 10%) effects on transpiration rates expressed on a leaf area basis in WT and rms4, but decreased transpiration rates of rms2. The low-N treatment decreased leaf expansion by 20–25% and expanding leaflet N concentration by 15%. These changes were similar in all genotypes. At sap-flow rates equivalent to whole-plant transpiration, the low N treatment decreased X-CK in rms2 but had no discernible effect in WT and rms4. Since the low N treatment decreased transpiration of all genotypes, photoperiod CK delivery rates also decreased in all genotypes. The similar leaf growth response of all genotypes to N deprivation despite differences in both absolute and relative X-CKs and deliveries suggests that shoot N status is more important in regulating leaf expansion than xylem-supplied cytokinins. The decreased X-CK and transpiration rate of rms2 following N deprivation suggests that changes in xylem-supplied CKs may modify water use.


2002 ◽  
Vol 50 (2) ◽  
pp. 229 ◽  
Author(s):  
Dane S. Thomas ◽  
Derek Eamus

Deciduous trees of Australia’s northern savannas typically have less-negative leaf water potentials than evergreen species and their stomata are more sensitive to soil drought than those of evergreen species. This paper presents the first investigation of the role of xylem sap pH and abscisic acid content in explaining stomatal behaviour of Australian trees in the field. We measured stomatal conductance, leaf-to-air vapour pressure difference (D) and leaf water potential, xylem abscisic acid (ABA) concentration and xylem sap pH of evergreen, semideciduous and fully deciduous tree species in the field over a 15-month period. Measurements were made during both the wet and the dry seasons. Stomata closed in response to increasing D in both evergreen and deciduous species and were equally sensitive to increasing D or declining leaf water potential. Xylem ABA concentration increased with declining leaf water potential in evergreen and semi-deciduous species, but not deciduous species. Similarly, there was an inverse correlation between stomatal conductance and xylem ABA concentration. Xylem sap pH increased as leaf water potential declined from wet to dry season for evergreen and semi-deciduous species but not for deciduous species. Deciduous species had less-negative water potentials and lower xylem ABA concentrations than evergreen species or semi-deciduous species. We conclude that changes in xylem sap pH and ABA content do occur seasonally in the wet–dry tropics of Australia and that these changes influence stomatal conductance, but only in evergreen and semi-deciduous species. Deciduous species do not appear to modulate either of these chemical signals.


1994 ◽  
Vol 21 (3) ◽  
pp. 377 ◽  
Author(s):  
A Alvino ◽  
M Centritto ◽  
FD Lorenzi

Pepper (Capsicum annuum L.) plants were grown in 1 m2 lysimeters under two different water regimes in order to investigate differences in the spatial arrangements of the leaves and to relate this to daily assimilation rates of leaves of the canopy. The control regime (well-watered (W) treatment) was irrigated whenever the accumulated 'A' pan evaporation reached 4 cm, whereas the water-stressed (S) treatment was watered whenever the predawn leaf water potential fell below -1 MPa. During the growing cycle, equal numbers of sun and shade leaves were chosen from the apical, middle and basal parts of the canopy, corresponding to groups of leaves of increasing age. The CO2 exchange rate (CER) was measured at 0830, 1230 and 1530 hours on 8 days along the crop cycle, on leaves in their natural inclination and orientation. Leaf water potentials were measured on apical leaves before dawn and concurrently with gas exchange measurements. Control plants maintained predawn leaf water potential at -0.3 MPa, but S plants reached values lower than -1.2 MPa. Midday leaf water potentials were about twice as low in the S plants as in the controls. Water stress reduced LA1 during the period of crop growth, and dry matter production at harvest. Stressed apical leaves appeared to reduce stress by changing their inclination. They were paraheliotropic around midday and diaheliotropic at 0830 and 1530 hours. The CER values of the S treatment were significantly lower than those of the W treatment in apical and middle leaves, whereas the CER of basal leaves did not differ in either treatments. In the S treatment, reduction in the CER values of sunlit apical leaves was more evident in the afternoon than at midday or early in the morning, whereas basal leaves were less affected by water than basal stress leaves if sunlit, and negligibly in shaded conditions.


1992 ◽  
Vol 43 (3) ◽  
pp. 659 ◽  
Author(s):  
L Guobin ◽  
DR Kemp ◽  
GB Liu

The effect of water stress during summer and recovery after rain on herbage accumulation, leaf growth components, stomatal conductance and leaf water relations of white clover (Trifolium repens cv. Haifa) and phalaris (Phalaris aquatica cv. Australian Commercial) was studied in an established mixed pasture under dryland (dry) or irrigated (wet) conditions. Soil water deficits under dry conditions reached 150 mm and soil water potentials in the top 20 cm declined to nearly -2 MPa after 50 days of dry weather. Water stress severely restricted growth of both species but then after rain fell, white clover growth rates exceeded those of phalaris. Under irrigation, white clover produced twice the herbage mass of phalaris but under dry conditions herbage production was similar from both species. Leaf appearance rates per tiller or stolon were slightly higher for white clover than phalaris but were reduced by 20% under water stress in both species. Leaf or petiole extension rates were more sensitive to water stress than leaf appearance rates and declined by 75% in phalaris and 90% in white clover. The ratio of leaf or petiole extension rates on dry/wet treatments was similar for both species in relation to leaf relative water contents, but in relation to leaf water potentials phalaris maintained higher leaf growth rates. Phalaris maintained a higher leaf relative water content in relation to leaf water potentials than did white clover and also maintained higher leaf water potentials in relation to the soil water potential in the top 20 cm. Stomata1 conductances for both species declined by 80-90% with increasing water stress, and both species showed similar stomatal responses to bulk leaf water potentials and leaf relative water contents. It is suggested that the poorer performance of white clover under water stress may be due principally to a shallower root system than phalaris and not due to any underlying major physiological differences. The white clover cultivar used in this study came from the mediterranean region and showed some different responses to water stress than previously published evidence on white clover. This suggests genetic variation in responses to water stress may exist within white clover. To maintain white clover in a pasture under dry conditions it is suggested that grazing practices aim to retain a high proportion of growing points.


2017 ◽  
Vol 4 ◽  
pp. e004 ◽  
Author(s):  
Christine Scoffoni ◽  
Grace John ◽  
Herve Cochard ◽  
Lawren Sack

Replacing ultra-pure water solution with ion solution closer to the composition of natural xylem sap increases stem hydraulic conductance by up to 58%, likely due to changes in electroviscosity in the pit membrane pores. This effect has been proposed to contribute to the control of plant hydraulic and stomatal conductance and potentially to influence on carbon balance during dehydration. However, this effect has never been directly tested for leaf xylem, which constitutes a major bottleneck in the whole plant. We tested for an ion-mediated increase in the hydraulic conductance of the leaf xylem (Kx) for seven species diverse in phylogeny and drought tolerance. Across species, no significant changes in Kx were observed between 0 and 15 mM KCl. We further tested for an effect of ion solution during measurements of Kx vulnerability to dehydration in Quercus agrifolia and found no significant impact. These results for leaf xylem contrast with the often strong ion effect reported for stems, and we suggest several hypotheses to account for the difference, relating to the structure of xylem conduits across vein orders, and the ultrastructure of leaf xylem pores. A negligible ion response in leaves would weaken xylem sap ion-mediated control of plant hydraulic conductance, facilitating modeling of whole plant hydraulic behavior and its influence on productivity.


Sign in / Sign up

Export Citation Format

Share Document