Phosphorylation of Cardiac Myosin Light Chain 2 by Protein Kinase C and Myosin Light Chain Kinase Increases Ca2+-Stimulated Actomyosin MgATPase Activity

1993 ◽  
Vol 193 (1) ◽  
pp. 254-260 ◽  
Author(s):  
T.A. Noland ◽  
J.F. Kuo
Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3562-3573 ◽  
Author(s):  
AD Michelson ◽  
SE Benoit ◽  
MH Kroll ◽  
JM Li ◽  
MJ Rohrer ◽  
...  

Abstract Thrombin decreases the platelet surface expression of the glycoprotein (GP) Ib-IX complex. To determine whether this effect is reversible, flow cytometric studies were performed with GPIb-IX-specific monoclonal antibodies. In both whole blood and washed platelet systems, incubation of platelets with thrombin or a combination of adenosine diphosphate and epinephrine resulted in a maximal decrease of the platelet surface expression of GPIb-IX within 5 minutes, after which there was a time- dependent return of the platelet surface GPIb-IX complex, which was maximal by 60 minutes. Exposure of the same platelets to additional exogenous thrombin resulted in a second decrease in platelet surface GPIb-IX, followed by a second reconstitution of platelet surface GPIb- IX. Throughout these experiments there was no measurable release from the platelets of glycocalicin (a proteolytic fragment of GPIb). Experiments in which platelets were preincubated with a biotinylated GPIb-specific MoAb showed that the GPIb molecules that returned to the platelet surface were the same molecules that had been translocated to the intraplatelet pool. The GPIb molecules that returned to the platelet surface were functionally competent to bind von Willebrand factor, as determined by ristocetin-induced platelet agglutination and ristocetin-induced binding of exogenous von Willebrand factor. Inhibitors of protein kinase C and myosin light-chain kinase enhanced the reexpression of platelet surface GPIb. In summary, the activation- induced decrease in the platelet surface expression of the GPIb-IX complex is reversible. Inactivation of protein kinase C and myosin light-chain kinase are important mechanisms in the reexpression of the platelet surface GPIb-IX complex.


Author(s):  
Gerry A. Smith

The involvement of the angiotensin II type 1 receptor in the Frank-Starling Law of the Heart, where the various activations are very limited, allows simple analysis of the kinase systems involved and thence extrapolation of the mechanism to that of angiotensin control of activation of cardiac and skeletal muscle contraction. The involvement of phosphorylation of the myosin light chain in the control of contraction is accepted but not fully understood. The involvement of troponin-I phosphorylation is also indicated but of unknown mechanism. There is no known signal for activation of myosin light chain kinase or Protein Kinase C-βII other than Ca2+/calmodulin but the former is constitutively active and thus has to be under control of a regulated inhibitor the latter kinase may also be the same. Ca2+/calmodulin is not activated in Frank-Starling, i.e. there are no diastolic or systolic [Ca2+] changes. I suggest here that that the regulated inhibition is by myosin light chain phosphatase and/or β-arrestin. Angiotensin activation is by translocation of the β-arrestin from the sarcoplasm to the PM thus reducing its inhibition in the sarcoplasm, this reduced inhibition has been wrongly attributed to a mythical downstream agonist property of β-arrestin.


Sign in / Sign up

Export Citation Format

Share Document