The Effect of Mouse Mammary Tumor Virus Receptor Activation on Mammary Epithelial Cell Sensitivity toward Prolactin

1994 ◽  
Vol 205 (1) ◽  
pp. 524-528 ◽  
Author(s):  
F.F. Bolander
Development ◽  
1998 ◽  
Vol 125 (10) ◽  
pp. 1921-1930 ◽  
Author(s):  
E.C. Kordon ◽  
G.H. Smith

Any epithelial portion of a normal mouse mammary gland can reproduce an entire functional gland when transplanted into an epithelium-free mammary fat pad. Mouse mammary hyperplasias and tumors are clonal dominant populations and probably represent the progeny of a single transformed cell. Our study provides evidence that single multipotent stem cells positioned throughout the mature fully developed mammary gland have the capacity to produce sufficient differentiated progeny to recapitulate an entire functional gland. Our evidence also demonstrates that these stem cells are self-renewing and are found with undiminished capacities in the newly regenerated gland. We have taken advantage of an experimental model where mouse mammary tumor virus infects mammary epithelial cells and inserts a deoxyribonucleic acid copy(ies) of its genome during replication. The insertions occur randomly within the somatic genome. CzechII mice have no endogenous nucleic acid sequence homology with mouse mammary tumor virus; therefore all viral insertions may be detected by Southern analysis provided a sufficient number of cells contain a specific insertional event. Transplantation of random fragments of infected CzechII mammary gland produced clonal-dominant epithelial populations in epithelium-free mammary fat pads. Serial transplantation of pieces of the clonally derived outgrowths produced second generation glands possessing the same viral insertion sites providing evidence for self-renewal of the original stem cell. Limiting dilution studies with cell cultures derived from third generation clonal outgrowths demonstrated that three multipotent but distinct mammary epithelial progenitors were present in clonally derived mammary epithelial populations. Estimation of the potential number of multipotent epithelial cells that may be evolved from an individual mammary-specific stem cell by self-renewal is in the order of 10(12)-10(13). Therefore, one stem cell might easily account for the renewal of mammary epithelium over several transplant generations.


2006 ◽  
Vol 27 (4) ◽  
pp. 1442-1454 ◽  
Author(s):  
Eva Gonzalez-Suarez ◽  
Daniel Branstetter ◽  
Allison Armstrong ◽  
Huyen Dinh ◽  
Hal Blumberg ◽  
...  

ABSTRACT RANK and RANKL, the key regulators of osteoclast differentiation and activation, also play an important role in the control of proliferation and differentiation of mammary epithelial cells during pregnancy. Here, we show that RANK protein expression is strictly regulated in a spatial and temporal manner during mammary gland development. RANK overexpression under the control of the mouse mammary tumor virus (MMTV) promoter in a transgenic mouse model results in increased mammary epithelial cell proliferation during pregnancy, impaired differentiation of lobulo-alveolar structures, decreased expression of the milk proteins β-casein and whey acidic protein, and deficient lactation. We also show that treatment of three-dimensional in vitro cultures of primary mammary cells from MMTV-RANK mice with RANKL results in increased proliferation and decreased apoptosis in the luminal area, resulting in bigger acini with filled lumens. Taken together, these results suggest that signaling through RANK not only promotes proliferation but also inhibits the terminal differentiation of mammary epithelial cells. Moreover, the increased proliferation and survival observed in a three-dimensional culture system suggests a role for aberrant RANK signaling during breast tumorigenesis.


Author(s):  
N. H. Sarkar ◽  
Dan H. Moore

Mouse mammary tumor virus (MTV) is believed to contain about 0.8% single stranded ribonucleic acid (RNA). This value of RNA content was estimated on a dry weight basis. The subject of this report is an attempt to visualize the RNA molecules of MTV particles.MTV particles were isolated from RIII mouse (tumor incidence approximately 80%) milk according to the method described by Lyons and Moore. Purified virions from 5 ml of milk were finally suspended in 0.2 ml of PBS, pH 7.4 and was mixed with an equal volume of pronase (5 mg/ml). This mixture was incubated at 37°C for an hour. RNA was extracted three times using freshly prepared cold phenol. It was then treated three times with cold ethyl ether to remove any trace of phenol. The RNA thus extracted was divided into two parts. One part was diluted four fold with 8M urea to avoid aggregation of the molecules. The other part was left untreated. Both samples were then mixed with an equal volume of 1M ammonium acetate, adjusted to pH 8.0 with NH3 containing chymotrypsin at a concentration of 0.01%.


Sign in / Sign up

Export Citation Format

Share Document