Evidence That in Situ Generated Reactive Oxygen Species Act as a Potent Stage I Tumor Promoter in Mouse Skin

1995 ◽  
Vol 209 (2) ◽  
pp. 698-705 ◽  
Author(s):  
U. Giri ◽  
S.D. Sharma ◽  
M. Abdulla ◽  
M. Athar
2021 ◽  
Author(s):  
Thomas Richards ◽  
Jonathan H. Harrhy ◽  
Richard J. Lewis ◽  
Alexander G. R. Howe ◽  
Grzegorz M. Suldecki ◽  
...  

2021 ◽  
Vol 77 (8) ◽  
pp. 529-535
Author(s):  
Maja Szelągowska ◽  
Justyna Skrzypek ◽  
Maciej Gawlik

2019 ◽  
Vol 9 (10) ◽  
pp. 2563-2570 ◽  
Author(s):  
Yuanguo Xu ◽  
Feiyue Ge ◽  
Meng Xie ◽  
Shuquan Huang ◽  
Junchao Qian ◽  
...  

An in situ photo-Fenton-like and magnetic recycle system, BaFe12O19/Ag3PO4 has been constructed. BaFe12O19 can catalyze the conversion of H2O2 to generate ROSs (˙O2− and ˙OH radicals) on the surface of Ag3PO4.


2013 ◽  
Vol 288 (23) ◽  
pp. 16916-16925 ◽  
Author(s):  
Mina Kalantari-Dehaghi ◽  
Yumay Chen ◽  
Wu Deng ◽  
Alex Chernyavsky ◽  
Steve Marchenko ◽  
...  

The development of nonhormonal treatment of pemphigus vulgaris (PV) has been hampered by a lack of clear understanding of the mechanisms leading to keratinocyte (KC) detachment and death in pemphigus. In this study, we sought to identify changes in the vital mitochondrial functions in KCs treated with the sera from PV patients and healthy donors. PV sera significantly increased proton leakage from KCs, suggesting that PV IgGs increase production of reactive oxygen species. Indeed, measurement of intracellular reactive oxygen species production showed a drastic increase of cell staining in response to treatment by PV sera, which was confirmed by FACS analysis. Exposure of KCs to PV sera also caused dramatic changes in the mitochondrial membrane potential detected with the JC-1 dye. These changes can trigger the mitochondria-mediated intrinsic apoptosis. Although sera from different PV patients elicited unique patterns of mitochondrial damage, the mitochondria-protecting drugs nicotinamide (also called niacinamide), minocycline, and cyclosporine A exhibited a uniform protective effect. Their therapeutic activity was validated in the passive transfer model of PV in neonatal BALB/c mice. The highest efficacy of mitochondrial protection of the combination of these drugs found in mitochondrial assay was consistent with the ability of the same drug combination to abolish acantholysis in mouse skin. These findings provide a theoretical background for clinical reports of the efficacy of mitochondria-protecting drugs in PV patients. Pharmacological protection of mitochondria and/or compensation of an altered mitochondrial function may therefore become a novel approach to development of personalized nonhormonal therapies of patients with this potentially lethal autoimmune blistering disease.


2020 ◽  
Vol 344 ◽  
pp. 136146 ◽  
Author(s):  
Md. Saddam Hossain ◽  
M. Yousuf A. Mollah ◽  
Md. Abu Bin Hasan Susan ◽  
Md. Mominul Islam

Sign in / Sign up

Export Citation Format

Share Document