Host Plant and Substrate Effects on Mortality of Southern Corn Rootworm from Entomopathogenic Nematodes

1997 ◽  
Vol 8 (2) ◽  
pp. 89-96 ◽  
Author(s):  
Astrid Eben ◽  
Mary E. Barbercheck
1997 ◽  
Vol 32 (2) ◽  
pp. 229-243 ◽  
Author(s):  
M.E. Barbercheck ◽  
W.C. Warrick

Field trials to test the efficacy of trap cropping and biological control for the management of Diabrotica undecimpunctata howardi Barber (Chrysomelidae: Luperini) in peanuts were conducted in 1992, 1993, and 1994. Cucurbita maxima Duchesne cv. ‘Blue Hubbard’ was used as a trap crop for adult beetles and the entomopathogenic nematodes, Steinernema carpocapse Weiser and Steinernema riobravis Cabanillas, Poinar and Raulston, were used as biological control agents against soil-inhabiting larvae. In 1992, peanut yields were highest in treatments that included a trap crop. Trap crop did not affect yield in 1993 or 1994. In 2 out of the 3 years, distribution of pod damage relative to the trap crop suggested that beetles oviposited more frequently in peanuts growing in the row next to the trap crop than in peanuts 3 rows from the trap crop. Although entomopathogenic nematodes persisted for a sufficient period to overlap with the presence of rootworms, they did not affect yield or pod damage in peanuts.


1997 ◽  
Vol 24 (2) ◽  
pp. 128-134 ◽  
Author(s):  
D. A. Herbert ◽  
W. J. Petka ◽  
R. L. Brandenburg

Abstract The southern corn rootworm, Diabrotica undecimpunctata howardi Barber, is a primary pest of peanut, Arachis hypogaea L., in Virginia and North Carolina and an occasional pest in South Carolina, Georgia, Alabama, and Texas. Currently, no alternatives involving integrated pest management exist for this pest, and control is based solely on preventive application of soil insecticides. Recent reductions in federal price support for peanut grown in the U.S. have provided incentives for growers to look for ways to reduce production costs. A risk index was developed that integrates factors that influence rootworm abundance and peanut pod damage to estimate levels of risk in individual peanut fields, and thus allows for more prescriptive and economical rootworm management. This index was evaluated using 44 field case studies in Virginia and North Carolina commercial peanut fields over the period 1989 to 1996. In each field case, predicted risk was compared to actual percent pod damage. Results showed that in 29 of 44 cases, the index accurately predicted general levels of risk to pod damage, and insecticide treatment decisions based on the index would have been correct in 32 of 44 cases. This report contains the individual index components, the justification for each, the indexing process, example index scenarios, and results of the process used in field case study evaluation.


2008 ◽  
pp. 3519-3522
Author(s):  
John B. Heppner ◽  
David B. Richman ◽  
Steven E. Naranjo ◽  
Dale Habeck ◽  
Christopher Asaro ◽  
...  

EDIS ◽  
2013 ◽  
Vol 2013 (9) ◽  
Author(s):  
Harsimran Kaur Gill ◽  
Gaurav Goyal ◽  
Jennifer Gillett-Kaufman

Spotted cucumber beetle is a major agricultural pest of North America. Another name for the spotted cucumber beetle is “southern corn rootworm”. Many Diabrotica species cause damage to field crops, especially corn, making these beetles a major agricultural concern. Because of the subterranean nature of their larvae, these insects are hard and expensive to control. This 6-page fact sheet was written by Harsimran Kaur Gill, Gaurav Goyal, and Jennifer Gillett-Kaufman, and published by the UF Department of Entomology and Nematology, September 2013. http://edis.ifas.ufl.edu/in1008


1998 ◽  
Vol 88 (12) ◽  
pp. 1248-1254 ◽  
Author(s):  
William E. Snyder ◽  
David W. Tonkyn ◽  
Daniel A. Kluepfel

The southern corn rootworm, Diabrotica undecimpunctata subsp. howardi, a common and mobile insect pest, was shown to transmit the rhizobacte-rium Pseudomonas chlororaphis strain L11 between corn plants. Strain L11 has been genetically modified to contain the lacZY genes from Escherichia coli. It can reach high densities on roots and invade the roots and move into the foliage. D. undecimpunctata subsp. howardi became infested with L11 as larvae while feeding on roots of seed-inoculated corn and retained the bacteria through pupation, molting to the adult stage, and emergence from the soil. Bacterial densities on or in the insects increased 100-fold after they fed again as adults on L11-infested foliage. Adults retained the bacteria for at least 2 weeks after last exposure and could transmit L11 to new plants. The likelihood of transmission decreased with time since last exposure to L11, but increased with time spent on the new plants. This research demonstrates that rhizobacteria can escape the rhizosphere by moving in or onto foliage, where they can then be acquired and transmitted by insects. This transmission route may be common among naturally occurring rhizobacteria and facilitate the dispersal of both beneficial and harmful soilborne microorganisms.


cftm ◽  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Brian Royals ◽  
Rick Brandenburg ◽  
Andrew Hare ◽  
David Jordan ◽  
Sally Taylor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document