scholarly journals Retinoic Acid Inhibits Cardiac Neural Crest Migration by Blocking c-Jun N-Terminal Kinase Activation

2001 ◽  
Vol 232 (2) ◽  
pp. 351-361 ◽  
Author(s):  
Jian Li ◽  
Jeffery D Molkentin ◽  
Melissa C Colbert
1998 ◽  
Vol 143 (6) ◽  
pp. 1725-1734 ◽  
Author(s):  
G.Y. Huang ◽  
E.S. Cooper ◽  
K. Waldo ◽  
M.L. Kirby ◽  
N.B. Gilula ◽  
...  

Previous studies showed that conotruncal heart malformations can arise with the increase or decrease in α1 connexin function in neural crest cells. To elucidate the possible basis for the quantitative requirement for α1 connexin gap junctions in cardiac development, a neural crest outgrowth culture system was used to examine migration of neural crest cells derived from CMV43 transgenic embryos overexpressing α1 connexins, and from α1 connexin knockout (KO) mice and FC transgenic mice expressing a dominant-negative α1 connexin fusion protein. These studies showed that the migration rate of cardiac neural crest was increased in the CMV43 embryos, but decreased in the FC transgenic and α1 connexin KO embryos. Migration changes occurred in step with connexin gene or transgene dosage in the homozygous vs. hemizygous α1 connexin KO and CMV43 embryos, respectively. Dye coupling analysis in neural crest cells in the outgrowth cultures and also in the living embryos showed an elevation of gap junction communication in the CMV43 transgenic mice, while a reduction was observed in the FC transgenic and α1 connexin KO mice. Further analysis using oleamide to downregulate gap junction communication in nontransgenic outgrowth cultures showed that this independent method of reducing gap junction communication in cardiac crest cells also resulted in a reduction in the rate of crest migration. To determine the possible relevance of these findings to neural crest migration in vivo, a lacZ transgene was used to visualize the distribution of cardiac neural crest cells in the outflow tract. These studies showed more lacZ-positive cells in the outflow septum in the CMV43 transgenic mice, while a reduction was observed in the α1 connexin KO mice. Surprisingly, this was accompanied by cell proliferation changes, not in the cardiac neural crest cells, but in the myocardium— an elevation in the CMV43 mice vs. a reduction in the α1 connexin KO mice. The latter observation suggests that cardiac neural crest cells may have a role in modulating growth and development of non–neural crest– derived tissues. Overall, these findings suggest that gap junction communication mediated by α1 connexins plays an important role in cardiac neural crest migration. Furthermore, they indicate that cardiac neural crest perturbation is the likely underlying cause for heart defects in mice with the gain or loss of α1 connexin function.


2010 ◽  
Vol 239 (4) ◽  
pp. 1136-1144 ◽  
Author(s):  
Thomas H. Rosenquist ◽  
Tammy Chaudoin ◽  
Richard H. Finnell ◽  
Gregory D. Bennett

Development ◽  
1996 ◽  
Vol 122 (3) ◽  
pp. 783-793 ◽  
Author(s):  
E. Gale ◽  
V. Prince ◽  
A. Lumsden ◽  
J. Clarke ◽  
N. Holder ◽  
...  

We exposed st.10 chicks to retinoic acid (RA), both globally, and locally to individual rhombomeres, to look at its role in specification of various aspects of hindbrain derived morphology. Previous studies have looked at RA exposure at earlier stages, during axial specification. Stage 10 is the time of morphological segmentation of the hindbrain and is just prior to neural crest migration. Rhombomere 4 localised RA injections result in specific alterations of pathways some crest cells that normally migrate to sites of differentiation of neurogenic derivatives. The r4 crest cells that give rise to mesenchymal derivatives are unaffected. In addition, r4 gene expression is also partially altered by RA; within 6 hours of r4 exposure to RA, ectopic expression of Krox-20 is seen in r4 and Hoxb-1 expression is lost while Hoxa-2 expression continues normally. When we examined these RA-treated animals later in development, they showed an anterior displacement of the facial ganglion in addition to a mis-direction of the extensions of its distal axons and a dramatic decrease in the number of contralateral vestibuloacoustic neurons normally seen in r4. Only this r4-specific neuronal type is affected in r4; the motor neuron projections seem normal in experimental animals. The specificity of this result, combined with the loss of Hoxb-1 expression in r4 and the work by Krumlauf and co-workers showing gain of contralateral neurons co-localised with ectopic Hoxb-1 expression, indicates a role for Hoxb-1 and RA in the specification of this cell type in normal development. These results suggest that RA, at st.10, is able to affect some aspects of segment identity while leaving others unchanged.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27624 ◽  
Author(s):  
Nata Y. S.-G. Diman ◽  
Sophie Remacle ◽  
Nicolas Bertrand ◽  
Jacques J. Picard ◽  
Stéphane Zaffran ◽  
...  

2002 ◽  
Vol 117 (1-2) ◽  
pp. 115-122 ◽  
Author(s):  
Xiaobing Jiang ◽  
Bibha Choudhary ◽  
Esther Merki ◽  
Kenneth R Chien ◽  
Robert E Maxson ◽  
...  

2002 ◽  
Vol 224 (2) ◽  
pp. 222-230 ◽  
Author(s):  
Philip R. Brauer ◽  
Thomas H. Rosenquist

Development ◽  
2000 ◽  
Vol 127 (9) ◽  
pp. 1869-1878 ◽  
Author(s):  
J.A. Epstein ◽  
J. Li ◽  
D. Lang ◽  
F. Chen ◽  
C.B. Brown ◽  
...  

Pax3 encodes a transcription factor expressed during mid-gestation in the region of the dorsal neural tube that gives rise to migrating neural crest populations. In the absence of Pax3, both humans and mice develop with neural crest defects. Homozygous Splotch embryos that lack Pax3 die by embryonic day 13.5 with cardiac defects that resemble those induced by neural crest ablation in chick models. This has led to the hypothesis that Pax3 is required for cardiac neural crest migration. However, cardiac derivatives of Pax3-expressing precursor cells have not been previously defined, and Pax3-expressing cells within the heart have not been well demonstrated. Hence, the precise role of Pax3 during cardiac development remains unclear. Here, we use a Cre-lox method to fate map Pax3-expressing neural crest precursors to the cardiac outflow tract. We show that although Pax3 itself is extinguished prior to neural crest populating the heart, derivatives of these precursors contribute to the aorticopulmonary septum. We further show that neural crest cells are found in the outflow tract of Splotch embryos, albeit in reduced numbers. This indicates that contrary to prior reports, Pax3 is not required for cardiac neural crest migration. Using a neural tube explant culture assay, we demonstrate that neural crest cells from Splotch embryos show normal rates of proliferation but altered migratory characteristics. These studies suggest that Pax3 is required for fine tuning the migratory behavior of the cardiac neural crest cells while it is not essential for neural crest migration.


Sign in / Sign up

Export Citation Format

Share Document