Metalloproteinase Inhibitor
Recently Published Documents





Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 302
Taline D. Kazandjian ◽  
Arif Arrahman ◽  
Kristina B. M. Still ◽  
Govert W. Somsen ◽  
Freek J. Vonk ◽  

Bites from elapid snakes typically result in neurotoxic symptoms in snakebite victims. Neurotoxins are, therefore, often the focus of research relating to understanding the pathogenesis of elapid bites. However, recent evidence suggests that some elapid snake venoms contain anticoagulant toxins which may help neurotoxic components spread more rapidly. This study examines the effects of venom from the West African black-necked spitting cobra (Naja nigricollis) on blood coagulation and identifies potential coagulopathic toxins. An integrated RPLC-MS methodology, coupled with nanofractionation, was first used to separate venom components, followed by MS, proteomics and coagulopathic bioassays. Coagulation assays were performed on both crude and nanofractionated N. nigricollis venom toxins as well as PLA2s and 3FTx purified from the venom. Assays were then repeated with the addition of either the phospholipase A2 inhibitor varespladib or the snake venom metalloproteinase inhibitor marimastat to assess whether either toxin inhibitor is capable of neutralizing coagulopathic venom activity. Subsequent proteomic analysis was performed on nanofractionated bioactive venom toxins using tryptic digestion followed by nanoLC-MS/MS measurements, which were then identified using Swiss-Prot and species-specific database searches. Varespladib, but not marimastat, was found to significantly reduce the anticoagulant activity of N. nigricollis venom and MS and proteomics analyses confirmed that the anticoagulant venom components mostly consisted of PLA2 proteins. We, therefore, conclude that PLA2s are the most likely candidates responsible for anticoagulant effects stimulated by N. nigricollis venom.

2021 ◽  
Vol 131 (1) ◽  
Diede W.M. Broekaart ◽  
Alexandra Bertran ◽  
Shaobo Jia ◽  
Anatoly Korotkov ◽  
Oleg Senkov ◽  

2020 ◽  
Vol 10 (1) ◽  
Barbara Pijet ◽  
Anna Konopka ◽  
Emilia Rejmak ◽  
Marzena Stefaniuk ◽  
Danylo Khomiak ◽  

AbstractAn intra-hippocampus injection of kainic acid serves as a model of status epilepticus and the subsequent development of temporal lobe epilepsy. Matrix metalloproteinase-9 (MMP-9) is an enzyme that controls remodeling of the extracellular milieu under physiological and pathological conditions. In response to brain insult, MMP-9 contributes to pathological synaptic plasticity that may play a role in the progression of an epileptic condition. Marimastat is a metalloproteinase inhibitor that was tested in clinical trials of cancer. The present study assessed whether marimastat can impair the development of epilepsy. The inhibitory efficacy of marimastat was initially tested in neuronal cultures in vitro. As a marker substrate, we used nectin-3. Next, we investigated the blood–brain barrier penetration of marimastat using mass spectrometry and evaluated the therapeutic potential of marimastat against seizure outcomes. We found that marimastat inhibited the cleavage of nectin-3 in hippocampal neuronal cell cultures. Marimastat penetrated the blood–brain barrier and exerted an inhibitory effect on metalloproteinase activity in the brain. Finally, marimastat decreased some seizure parameters, such as seizure score and number, but did not directly affect status epilepticus. The long-term effects of marimastat were evident up to 6 weeks after kainic acid administration, in which marimastat still inhibited seizure duration.

10.14444/7078 ◽  
2020 ◽  
Vol 14 (4) ◽  
pp. 585-593

Sign in / Sign up

Export Citation Format

Share Document