A 23-kDa Recombinant Antigen of Cryptosporidium parvum Induces a Cellular Immune Response on in Vitro Stimulated Spleen and Mesenteric Lymph Node Cells from Infected Mice

2000 ◽  
Vol 96 (1) ◽  
pp. 32-41 ◽  
Author(s):  
María-Teresa Bonafonte ◽  
L.Mary Smith ◽  
Jan R. Mead
1969 ◽  
Vol 130 (5) ◽  
pp. 1031-1045 ◽  
Author(s):  
Stuart F. Schlossman ◽  
Judith Herman ◽  
Arieh Yaron

Studies of the immunochemical specificity of antigen-induced thymidine-2-14C incorporation in lymph node cells obtained from animals immunized to a series of closely related α-DNP-oligolysines, ϵ-DNP-oligolysines, and oligolysines have shown that the sensitized cell exhibits an extraordinary degree of specificity for antigen. The sensitized cell is maximally stimulated by the homologous immunizing antigen and can discriminate among compounds which differ from one another only in the position of a dinitrophenyl group or D-lysine residue on an identical oligolysine backbone. These studies support the view that the immunogen is not degraded prior to the induction of the immune response, and that the majority of cells produced as a consequence of immunization have stereospecific antigen receptors for the DNP-oligolysine used to induce the response; a smaller and more variably sized population of cells is produced with receptors specific for the oligolysine portion of the immunizing antigen. When specifically sensitized lymph node cell cultures are stimulated in vitro by heterologous DNP-oligolysines, the oligolysine- and not the DNP-oligolysine-sensitive population of cells appears to play a crucial role in the specificity of such cross-reactions. It is concluded from these studies that the antigen receptor on the sensitized lymph node cell differs in both kind and degree from conventional antibody. The chemical nature of the receptor and the means by which this receptor reacts with antigen to initiate the biosynthetic or proliferative cellular immune response still remain undefined.


2005 ◽  
Vol 73 (8) ◽  
pp. 5245-5248 ◽  
Author(s):  
Inderpal Singh ◽  
Cynthia Theodos ◽  
Saul Tzipori

ABSTRACT Recombinant antigens of Cryptosporidium parvum, Cp900 and Cp40 but not Cp15, stimulated C. parvum-specific proliferative immune responses of mesenteric lymph node cells in C57BL/6J mice infected with different isolates (MD, GCH1, UCP, and IOWA) of C. parvum, indicating that both Cp900 and Cp40 are immunodominant targets of cellular immune responses during C. parvum infection.


Parasitology ◽  
1995 ◽  
Vol 110 (1) ◽  
pp. 71-78 ◽  
Author(s):  
K. Robinson ◽  
T. Bellaby ◽  
D. Wakelin

NIH and C57 BL/10 (BIO) mice show genetically determined differences in their response to Trichinella spiralis infection. This study examines the influence of these on parameters of the immune response to infection after vaccination using muscle-larval excretory–secretory antigen in Freund's complete adjuvant. Serum antibody levels were greatly elevated when mice of both strains were vaccinated prior to infection; however, NIH produced significantly higher-level antibody responses than B10. Vaccination accelerated and increased the capacity of mesenteric lymph node T-cells to proliferate in vitro in response to specific antigen stimulation in both mouse strains but, in general, the stimulation indices of NIH cells were higher than those of the B10. The capacity of mesenteric lymph node cells (MLNC) and spleen cells (SC) to produce IL-5 and γIFN was measured after specific in vitro stimulation and early γIFN secretion was noted in the supernatants of NIH MLNC and SC, but not in B10 SC. Concentrations of IL-S rose steadily over the first 10–14 days after infection in cell cultures from both strains. Prior vaccination of these animals appeared to enhance cytokine levels. It is postulated that the efficacy of vaccination in NIH mice is a consequence of their genetically determined capacity to produce early and high-level responses to the antigens of T. spiralis and to express these in intestinal effector mechanisms.


Planta Medica ◽  
2017 ◽  
Vol 84 (05) ◽  
pp. 311-319 ◽  
Author(s):  
Shiho Murakami ◽  
Yutaka Miura ◽  
Makoto Hattori ◽  
Hiroshi Matsuda ◽  
Christiaan Malherbe ◽  
...  

Abstract Cyclopia genistoides, one of the traditional South African medicinal plants, and other species of the same genus offer noteworthy phenolic profiles, in particular high levels of the anti-allergic xanthone mangiferin. Hot water and 40% ethanol-water (v/v) extracts, prepared from C. genistoides, Cyclopia subternata, and Cyclopia maculata, were tested for immune-regulating activity in vitro using murine splenocytes and mesenteric lymph node cells. The 40% ethanol-water extracts of C. genistoides and C. subternata significantly enhanced production of several types of cytokines, including IL-4, IL-17, and IFN-γ, by antigen-stimulated splenocytes. A concentration-dependent response was observed, noticeably for IFN-γ production. The activity of the extracts did not correlate with the content of any of the major phenolic compounds, indicative that other extract constituents also play a role in immunomodulation. Additionally, the increased ratio of CD4+CD25+Foxp3+ Treg cells to total CD4+ cells indicated induction of Foxp3+ cells when mesenteric lymph node cells were cultured in the presence of these two extracts. This study is the first reporting immunostimulatory activity for Cyclopia, which are widely consumed as the herbal tea known as honeybush, underpinning further investigations into the potential use of its extracts as adjuvants for mucosal immunotherapy.


2007 ◽  
Vol 142 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Andrzej Gryglewski ◽  
Pawel Majcher ◽  
Krzysztof Bryniarski ◽  
Stanislaw Konturek ◽  
Maria Ptak ◽  
...  

2001 ◽  
Vol 69 (3) ◽  
pp. 1605-1612 ◽  
Author(s):  
C. Bonenfant ◽  
I. Dimier-Poisson ◽  
F. Velge-Roussel ◽  
D. Buzoni-Gatel ◽  
G. Del Giudice ◽  
...  

ABSTRACT Effective protection against intestinal pathogens requires both mucosal and systemic immune responses. Intranasal administration of antigens induces these responses but generally fails to trigger a strong protective immunity. Mucosal adjuvants can significantly enhance the immunogenicities of intranasally administered antigens. Cholera toxin (CT) and heat-labile enterotoxin (LT) are strong mucosal adjuvants with a variety of antigens. Moreover, the toxicities of CT and LT do not permit their use in humans. Two nontoxic mutant LTs, LTR72 and LTK63, were tested with Toxoplasma gondii SAG1 protein in intranasal vaccination of CBA/J mice. Vaccination with SAG1 plus LTR72 or LTK63 induced strong systemic (immunoglobulin G [IgG]) and mucosal (IgA) humoral responses. Splenocytes and mesenteric lymph node cells from mice immunized with LTR72 plus SAG1, but not those from mice immunized with LTK63 plus SAG1, responded to restimulation with a T. gondii lysate antigen in vitro. Gamma interferon and interleukin 2 (IL-2) production by splenocytes and IL-2 production by mesenteric lymph node cells were observed in vitro after antigen restimulation, underlying a Th1-like response. High-level protection as assessed by the decreased load of cerebral cysts after a challenge with the 76K strain of T. gondiiwas obtained in the group immunized with LTR72 plus SAG1 and LTK63 plus SAG1. They were as well protected as the mice immunized with the antigen plus native toxins. This is the first report showing protection against a parasite by using combinations of nontoxic mutant LTs and SAG1 antigen. These nontoxic mutant LTs are now attractive candidates for the development of mucosally delivered vaccines.


Sign in / Sign up

Export Citation Format

Share Document