immunostimulatory activity
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 119)

H-INDEX

40
(FIVE YEARS 9)

Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 69
Author(s):  
Igor V. Krasilnikov ◽  
Aleksandr V. Kudriavtsev ◽  
Anna V. Vakhrusheva ◽  
Maria E. Frolova ◽  
Aleksandr V. Ivanov ◽  
...  

The COVID-19 pandemic is ongoing, and the need for safe and effective vaccines to prevent infection and to control spread of the virus remains urgent. Here, we report the development of a SARS-CoV-2 subunit vaccine candidate (Betuvax-CoV-2) based on RBD and SD1 domains of the spike (S) protein fused to a human IgG1 Fc fragment. The antigen is adsorbed on betulin adjuvant, forming spherical particles with a size of 100–180 nm, mimicking the size of viral particles. Here we confirm the potent immunostimulatory activity of betulin adjuvant, and demonstrate that two immunizations of mice with Betuvax-CoV-2 elicited high titers of RBD-specific antibodies. The candidate vaccine was also effective in stimulating a neutralizing antibody response and T cell immunity. The results indicate that Betuvax-CoV-2 has good potential for further development as an effective vaccine against SARS-CoV-2.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12575
Author(s):  
Xianghui Li ◽  
Zhiqiang Zhang ◽  
Zhenhuan Guo ◽  
Li Zhao ◽  
Yonglu Liu ◽  
...  

Nanoemulsions (NE) are used widely in pharmaceutical drug formulations and vaccine preparation, and Acanthopanax senticousus polysaccharide (ASPS) is a natural bioactive compound with immunostimulatory activity. Therefore, NE-loaded ASPS is expected to provide immunological enhancement for effective treatment. In the present study, Acanthopanax senticousus polysaccharide (ASPS was encapsulated into nanoemulsions, the resultant ASPS–NE were coated with a negative charge, and the immune enhancement mechanism of these ASPS-NE formulations was analyzed. The immunosuppressive animal models (70 ICR mice, male) for the study were established using cyclophosphamide. In addition, the activation of splenocyte proliferation, phagocytosis of the macrophages, the ratio of CD4+ to CD8+, the concentrations of the cytokines in serum, Western blot analysis was used for the analysis of the P65/JNK/ikk α signaling pathway in the peritoneal macrophage s. The results revealed that the ASPS-NE could stimulated the proliferation of splenocytes and enhance immunity. The ASPS-NE induced the expression of different cytokines (TNF-α, IFN-γ, IL-2, and IL-6), could activate the expressions of P65, JNK, and ikkα, and regulated the Th1/Th2 cytokines. These findings demonstrated the potential of ASPS-NE formulations for drug delivery and to induce potent and sustained immune responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kang Liang ◽  
Rui Zhang ◽  
Haiyan Luo ◽  
Jinlong Zhang ◽  
Zhenyuan Tian ◽  
...  

The gram-negative facultative anaerobic bacteria Salmonella enterica serovar Typhimurium (hereafter S. Typhimurium) has always been considered as one candidate of anti-tumor agents or vectors for delivering drug molecules. In this study, we compared several widely studied S. Typhimurium strains in their anti-tumor properties aiming to screen out the best one for further optimization and use in cancer therapy. In terms of the motility, virulence and anti-tumor efficacy, the three strains 14028, SL1344, and UK-1 were similar and obviously better than LT-2, and UK-1 showed the best phenotypes among them. Therefore, the strain UK-1 (D) was selected for the following studies. Its auxotrophic mutant strain (D1) harboring ∆aroA and ∆purM mutations was further optimized through the modification of lipid A structure, generating a new strain named D2 with stronger immunostimulatory activity. Finally, the ∆asd derivative of D2 was utilized as one live vector to deliver anti-tumor molecules including the angiogenesis inhibitor endostatin and apoptosis inducer TRAIL and the therapeutic and toxic-side effects were evaluated in mouse models of colon carcinoma and melanoma. After intraperitoneal infection, engineered Salmonella bacteria equipped with endostatin and/or TRAIL significantly suppressed the tumor growth and prolonged survival of tumor-bearing mice compared to PBS or bacteria carrying the empty plasmid. Consistently, immunohistochemical studies confirmed the colonization of Salmonella bacteria and the expression of anti-tumor molecules inside tumor tissue, which were accompanied by the increase of cell apoptosis and suppression of tumor angiogenesis. These results demonstrated that the beneficial anti-tumor efficacy of attenuated S. Typhimurium bacteria could be improved through delivery of drug molecules with powerful anti-tumor activities.


2021 ◽  
Author(s):  
◽  
Jessica Helen Bird

<p>Trehalose glycolipids are a diverse family of long-chain fatty acid diesters isolated from the cell walls of bacteria, in particular Mycobacterium species including M. tuberculosis. These molecules possess an array of biological activities which contribute to the survival and virulence of the organism,however, it is their activity as potent stimulators of innate and early adaptive immunity for which they are of interest. In particular, trehalose glycolipids have an application as adjuvants in vaccines and immunotherapies, for diseases such as tuberculosis (TB) and cancer. Recently, the macrophage-inducible C-type lectin, Mincle, and the macrophage C-type lectin, MCL, were identified as receptors for trehalose glycolipids, however, the exact mechanisms by which these receptors recognise and bind glycolipids is, as yet, unknown.This thesis presents the synthesis of a variety of structurally diverse trehalose glycolipid analogues. As such, three mycolic acids bearing a C22 α-chain and diversified meromycolate branches were prepared from an epoxide intermediate, itself prepared in eight steps from commercially available starting materials. The mycolic acids were then coupled to TMS-trehalose and subsequently deprotected to give the mono-and diester derivatives, 1a-cand 2c, which will be assessed for their immunostimulatory activity through the activation of wild type and Mincle-/-murine macrophages. This work provides a first step towards determining how the structures of trehalose glycolipids influence Mincle and MCL binding and activity, and allow for the development of improved trehalose glycolipids for use in adjuvant therapies.</p>


2021 ◽  
Author(s):  
◽  
Jessica Helen Bird

<p>Trehalose glycolipids are a diverse family of long-chain fatty acid diesters isolated from the cell walls of bacteria, in particular Mycobacterium species including M. tuberculosis. These molecules possess an array of biological activities which contribute to the survival and virulence of the organism,however, it is their activity as potent stimulators of innate and early adaptive immunity for which they are of interest. In particular, trehalose glycolipids have an application as adjuvants in vaccines and immunotherapies, for diseases such as tuberculosis (TB) and cancer. Recently, the macrophage-inducible C-type lectin, Mincle, and the macrophage C-type lectin, MCL, were identified as receptors for trehalose glycolipids, however, the exact mechanisms by which these receptors recognise and bind glycolipids is, as yet, unknown.This thesis presents the synthesis of a variety of structurally diverse trehalose glycolipid analogues. As such, three mycolic acids bearing a C22 α-chain and diversified meromycolate branches were prepared from an epoxide intermediate, itself prepared in eight steps from commercially available starting materials. The mycolic acids were then coupled to TMS-trehalose and subsequently deprotected to give the mono-and diester derivatives, 1a-cand 2c, which will be assessed for their immunostimulatory activity through the activation of wild type and Mincle-/-murine macrophages. This work provides a first step towards determining how the structures of trehalose glycolipids influence Mincle and MCL binding and activity, and allow for the development of improved trehalose glycolipids for use in adjuvant therapies.</p>


ChemBioChem ◽  
2021 ◽  
Author(s):  
Yusuke Kawamoto ◽  
Wen Liu ◽  
Ji Hye Yum ◽  
Soyoung Park ◽  
Hiroshi Sugiyama ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3034
Author(s):  
Kyung-Sook Chung ◽  
Jae Woong Choi ◽  
Ji-Sun Shin ◽  
Seo-Yeon Kim ◽  
Hee-Soo Han ◽  
...  

We previously reported that the immunostimulatory activity of heat-killed Latilactobacillus sakei K040706 in macrophages and cyclophosphamide (CTX)-treated mice. However, identification of heat-killed L. sakei K040706 (heat-killed LS06) using a validated method is not yet reported. Further, the underlying molecular mechanisms for its immunostimulatory effects in CTX-induced immunosuppressed mice remain unknown. In this study, we developed strain-specific genetic markers to detect heat-killed L. sakei LS06. The lower detection limit of the validated primer set was 2.1 × 105 colony forming units (CFU)/mL for the heat-killed LS06 assay. Moreover, oral administration of heat-killed LS06 (108 or 109 CFU/day, p.o.) effectively improved the body loss, thymus index, natural killer cell activity, granzyme B production, and T and B cell proliferation in CTX-treated mice. In addition, heat-killed LS06 enhanced CTX-reduced immune-related cytokine (interferon-γ, interleukin (IL)-2, and IL-12) production and mRNA expression. Heat-killed LS06 also recovered CTX-altered microbiota composition, including the phylum levels of Bacteroidetes, Firmicutes, and Proteobacteria and the family levels of Muribaculaceae, Prevotellaceae, Tannerellaceae, Christensenellaceae, Gracilibacteraceae, and Hungateiclostridiaceae. In conclusion, since heat-killed L. sakei K040706 ameliorated CTX-induced immunosuppression and modulated gut microbiota composition, they have the potential to be used in functional foods for immune regulation.


Sign in / Sign up

Export Citation Format

Share Document