Yeast Artificial Chromosome and Radiation Hybrid Map of Loci in Chromosome Band 8p22, a Common Region of Allelic Loss in Multiple Human Cancers

Genomics ◽  
1994 ◽  
Vol 24 (2) ◽  
pp. 317-323 ◽  
Author(s):  
Robert Bookstein ◽  
Alina Levy ◽  
Donal MacGrogan ◽  
Tracey B. Lewis ◽  
Jean Weissenbach ◽  
...  
1997 ◽  
Vol 5 (5) ◽  
pp. 299-307 ◽  
Author(s):  
M. Bouzyk ◽  
S.P. Bryant ◽  
C. Evans ◽  
S. Guioli ◽  
S. Ford ◽  
...  

Blood ◽  
1994 ◽  
Vol 83 (10) ◽  
pp. 2962-2969 ◽  
Author(s):  
M Taniwaki ◽  
F Matsuda ◽  
A Jauch ◽  
K Nishida ◽  
T Takashima ◽  
...  

Abstract Partner sites of 14q32 translocations found in B-cell malignancies were detected by fluorescence in situ hybridization (FISH) using yeast artificial chromosome (YAC) clones, Y20 and Y6, containing the human Ig heavy chain (IgH) gene locus. Y20 spans a 160-kb upstream and 40-kb downstream region of the JH segments on chromosome band 14q32.33. Y6 is 300-kb upstream of Y20, and spans a further 320-kb telomeric region. The human DNA sequences amplified by Alu polymerase chain reaction of the YAC clones were used as probes for FISH to study six patients with non-Hodgkin's lymphoma (NHL), one patient with acute lymphoblastic leukemia, and one cell line FR4 established from a plasmacytoma. Three telomeric YAC clones each specific for 3q, 8q, and 18q were also used to further characterize 14q32 translocations. The IgH YACs were successfully applied to detect cytogenetically invisible subtelomeric translocation of the IgH gene locus to each partner site in t(14;18), t(8;14), and t(14;19), and to identify t(3;14) (q27;q32.33) in three patients with 14q32 translocation of unknown origin. Furthermore, complex translocations involving more than three chromosomes were detected in an NHL patient with t(8;14), and t(3;12), and in the FR4 with der(14)t(8;14), der(8)dic(1;8), and del(1)(q21). The technique would be a useful tool in elucidating the mechanisms of a 14q32 translocation in B-cell malignancies.


1998 ◽  
Vol 18 (9) ◽  
pp. 5465-5477 ◽  
Author(s):  
Edward B. Cambareri ◽  
Rafael Aisner ◽  
John Carbon

ABSTRACT DNA from the centromere region of linkage group (LG) VII ofNeurospora crassa was cloned previously from a yeast artificial chromosome library and was found to be atypical ofNeurospora DNA in both composition (AT rich) and complexity (repetitive). We have determined the DNA sequence of a small portion (∼16.1 kb) of this region and have identified a cluster of three new retrotransposon-like elements as well as degenerate fragments from the 3′ end of Tad, a previously identified LINE-like retrotransposon. This region contains a novel full-length but nonmobilecopia-like element, designated Tcen, that is only associated with centromere regions. Adjacent DNA contains portions of a gypsy-like element designated Tgl1. A third new element, Tgl2, shows similarity to theTy3 transposon of Saccharomyces cerevisiae. All three of these elements appear to be degenerate, containing predominantly transition mutations suggestive of the repeat-induced point mutation (RIP) process. Three new simple DNA repeats have also been identified in the LG VII centromere region. While Tcenelements map exclusively to centromere regions by restriction fragment length polymorphism analysis, the defective Tad elements appear to occur most frequently within centromeres but are also found at other loci including telomeres. The characteristics and arrangement of these elements are similar to those seen in theDrosophila centromere, but the relative abundance of each class of repeats, as well as the sequence degeneracy of the transposon-like elements, is unique to Neurospora. These results suggest that the Neurospora centromere is heterochromatic and regional in character, more similar to centromeres of Drosophila than to those of most single-cell yeasts.


2013 ◽  
Vol 13 (1) ◽  
pp. 19-32 ◽  
Author(s):  
Monika K. Michalak de Jimenez ◽  
Filippo M. Bassi ◽  
Farhad Ghavami ◽  
Kristin Simons ◽  
Rissa Dizon ◽  
...  

1994 ◽  
Vol 297 (3) ◽  
pp. 441-445 ◽  
Author(s):  
D Hickman ◽  
A Risch ◽  
V Buckle ◽  
N K Spurr ◽  
S J Jeremiah ◽  
...  

Arylamine N-acetyltransferase is encoded at two loci, AAC-1 and AAC-2, on human chromosome 8. The products of the two loci are able to catalyse N-acetylation of arylamine carcinogens, such as benzidine and other xenobiotics. AAC-2 is polymorphic and individuals carrying the slow-acetylator phenotype are more susceptible to benzidine-induced bladder cancer. We have identified yeast artificial chromosome clones encoding AAC-1 and AAC-2 and have used the cloned DNAs as fluorescent probes for in situ hybridization. The hybridization patterns allow assignment of AAC-1 and AAC-2 to chromosome 8p21.3-23.1, a region in which deletions have been associated with bladder cancer [Knowles, Shaw and Proctor (1993) Oncogene 8, 1357-1364].


Sign in / Sign up

Export Citation Format

Share Document