Volumes and heat capacities of aqueous solutions of ammonium chloride from the temperatures 298.15 K to 623 K and pressures to 28 MPa

1996 ◽  
Vol 28 (8) ◽  
pp. 851-872 ◽  
Author(s):  
Andrei V. Sharygin ◽  
Robert H. Wood
1978 ◽  
Vol 56 (1) ◽  
pp. 24-28 ◽  
Author(s):  
Alain Roux ◽  
Goolam M. Musbally ◽  
Gérald Perron ◽  
Jacques E. Desnoyers ◽  
Prem Paul Singh ◽  
...  

Measurements at 25 °C with flow calorimeters and densimeters have led to heat capacities and densities of aqueous solutions of 11 1:1 electrolytes: NaClO3, NaBrO3, NaIO3, NaNO3, NaClO4, NH4NO3, KClO3, KBrO3, KIO3, NH4Cl, and NH4ClO4. The first 6 salts were studied up to near saturation. We have used results of these measurements to obtain apparent molal heat capacities and apparent molal volumes of the various solutes. Extrapolation to infinite dilution on the basis of the Debye–Hückel theory bas led to [Formula: see text]and [Formula: see text] values for each solute. We have compared these standard values with results of earlier investigations.


1994 ◽  
Vol 72 (2) ◽  
pp. 362-368 ◽  
Author(s):  
Andrew W. Hakin ◽  
Michelle M. Duke ◽  
Sheri A. Klassen ◽  
Robert M. McKay ◽  
Kathryn E. Preuss

The thermodynamics of amino acid systems are key to the understanding of protein chemistry. We have found that many previous studies of the apparent molar volumes and heat capacities of aqueous solutions of amino acids were conducted at the standard temperature of 298.15 K. This does not allow for the fact that most biological processes occur at temperatures removed from this standard condition.In an attempt to address this imbalance we have measured densities and heat capacities for aqueous solutions of glycine, L-alanine, L-serine, and L-threonine at 288.15, 298.15, 313.15, and 328.15 K using a Picker flow microcalorimeter. Apparent molar volumes and heat capacities, and the associated standard state partial molar properties have been calculated. Constant pressure variations of revised Helgeson, Kirkham, and Flowers equations have been fitted to calculated standard state volumes and heat capacities over the temperature range 288.15 to 328.15 K. These equations may be used to estimate standard state volumes and heat capacities, and hence equilibrium constants, for aqueous amino acid systems at higher temperatures.


Sign in / Sign up

Export Citation Format

Share Document