A Robust Low Diffusive Kinetic Scheme for the Navier–Stokes/Euler Equations

1997 ◽  
Vol 133 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Jean-Marc Moschetta ◽  
D.I. Pullin
2019 ◽  
Vol 150 (6) ◽  
pp. 2776-2814 ◽  
Author(s):  
Theodore D. Drivas ◽  
Darryl D. Holm

AbstractSmooth solutions of the incompressible Euler equations are characterized by the property that circulation around material loops is conserved. This is the Kelvin theorem. Likewise, smooth solutions of Navier–Stokes are characterized by a generalized Kelvin's theorem, introduced by Constantin–Iyer (2008). In this note, we introduce a class of stochastic fluid equations, whose smooth solutions are characterized by natural extensions of the Kelvin theorems of their deterministic counterparts, which hold along certain noisy flows. These equations are called the stochastic Euler–Poincaré and stochastic Navier–Stokes–Poincaré equations respectively. The stochastic Euler–Poincaré equations were previously derived from a stochastic variational principle by Holm (2015), which we briefly review. Solutions of these equations do not obey pathwise energy conservation/dissipation in general. In contrast, we also discuss a class of stochastic fluid models, solutions of which possess energy theorems but do not, in general, preserve circulation theorems.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1195
Author(s):  
Shu Wang ◽  
Yongxin Wang

This paper investigates the globally dynamical stabilizing effects of the geometry of the domain at which the flow locates and of the geometry structure of the solutions with the finite energy to the three-dimensional (3D) incompressible Navier–Stokes (NS) and Euler systems. The global well-posedness for large amplitude smooth solutions to the Cauchy problem for 3D incompressible NS and Euler equations based on a class of variant spherical coordinates is obtained, where smooth initial data is not axi-symmetric with respect to any coordinate axis in Cartesian coordinate system. Furthermore, we establish the existence, uniqueness and exponentially decay rate in time of the global strong solution to the initial boundary value problem for 3D incompressible NS equations for a class of the smooth large initial data and a class of the special bounded domain described by variant spherical coordinates.


Entropy ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 539 ◽  
Author(s):  
Gregor Chliamovitch ◽  
Yann Thorimbert

In two recent papers we introduced a generalization of Boltzmann’s assumption of molecular chaos based on a criterion of maximum entropy, which allowed setting up a bilocal version of Boltzmann’s kinetic equation. The present paper aims to investigate how the essentially non-local character of turbulent flows can be addressed through this bilocal kinetic description, instead of the more standard approach through the local Euler/Navier–Stokes equation. Balance equations appropriate to this kinetic scheme are derived and closed so as to provide bilocal hydrodynamical equations at the non-viscous order. These equations essentially consist of two copies of the usual local equations, but coupled through a bilocal pressure tensor. Interestingly, our formalism automatically produces a closed transport equation for this coupling term.


Author(s):  
Daniel Broc ◽  
Marion Duclercq

It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid at rest, fluid flow, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. The paper deals with the vibration of tube bundles in a fluid, under a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influenced by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Many works has been made in the last years to develop homogenization methods for the dynamic behaviour of tube bundles (/2/ and /3/). The size of the problem is reduced, and it is possible to make numerical simulations on wide tubes bundles with reasonable computer times. These homogenization methods are valid for “little displacements” of the structure (the tubes), in a fluid at rest. The fluid movement is governed by the Euler equations. In this case, only “inertial effects” will take place, with globally lower frequencies. It is well known that dissipative effects due to the fluid may take place, even if the displacements of the tube are no so high, or if the fluid is not still (/4/, /5/, /6/ and /8/). Such effects may be described in the homogenized models by using a Rayleigh damping, but the basic assumption of the model remains the “perfect fluid” hypothesis. It seem necessary, in order to get a best description of the physical phenomena, to build a more general model, based on the general Navier Stokes equation for the fluid. The homogenization of such system will be much more complex than for the Euler equations. The paper doesn’t pretend to give a general solution of the problem, but only points out the most important key points to build such homogenized model for the dynamic behaviour of tubes bundles in a fluid.


Sign in / Sign up

Export Citation Format

Share Document