New Start Site for Escherichia coli RNA Polymerase at an Engineered Short Region of Non-complementarity in Double-stranded DNA

1993 ◽  
Vol 233 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Amporn Tripatara ◽  
Pieter L. deHaseth
2005 ◽  
Vol 33 (1) ◽  
pp. 181-183 ◽  
Author(s):  
N. Tucker ◽  
B. D'Autréaux ◽  
S. Spiro ◽  
R. Dixon

Nitric oxide is an intermediate of denitrification, and is one of the radical species deployed by macrophages against invading pathogens, therefore bacterial responses to NO are of considerable importance. The Escherichia coli flavorubredoxin and its associated oxidoreductase reduce NO to nitrous oxide under anaerobic conditions, and are encoded by the norVW transcription unit. Expression of norVW requires the NO sensing regulatory protein NorR and is dependent on RNA polymerase containing the alternative sigma factor, σ54. We have purified NorR and shown that it binds to three sites in the norVW promoter region, located 75–140 bp upstream of the experimentally verified transcription start site. We have also identified two binding sites for the integration host factor, one between the NorR sites and the σ54-RNA polymerase binding site, and a second downstream of the norVW transcription start site. Comparison of the norVW promoters of enteric bacteria along with known and putative NorR-regulated promoters from Vibrio, Ralstonia and Pseudomonas species suggests that NorR binding sites contain an invariant GT(N7)AC motif flanking an AT-rich central region. The identification of a consensus for NorR binding sites will help to elucidate additional members of the NorR regulon.


2010 ◽  
Vol 107 (5) ◽  
pp. 2247-2252 ◽  
Author(s):  
Beatriz Cámara ◽  
Minhao Liu ◽  
Jonathan Reynolds ◽  
Andrey Shadrin ◽  
Bing Liu ◽  
...  

Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the host RNA polymerase (RNAP)—a multi-subunit enzyme responsible for gene transcription—by a small (∼7 kDa) phage-encoded protein called Gp2. Gp2 is also a potent inhibitor of E. coli RNAP in vitro. Here we describe the first atomic resolution structure of Gp2, which reveals a distinct run of surface-exposed negatively charged amino acid residues on one side of the molecule. Our comprehensive mutagenesis data reveal that two conserved arginine residues located on the opposite side of Gp2 are important for binding to and inhibition of RNAP. Based on a structural model of the Gp2-RNAP complex, we propose that inhibition of transcription by Gp2 involves prevention of RNAP-promoter DNA interactions required for stable DNA strand separation and maintenance of the “transcription bubble” near the transcription start site, an obligatory step in the formation of a transcriptionally competent promoter complex.


1999 ◽  
Vol 181 (12) ◽  
pp. 3864-3868 ◽  
Author(s):  
Wilma Ross ◽  
Julia Salomon ◽  
Walter M. Holmes ◽  
Richard L. Gourse

ABSTRACT The transcription factor FIS has been implicated in the regulation of several stable RNA promoters, including that for the major tRNALeu species in Escherichia coli, tRNA1 Leu. However, no evidence for direct involvement of FIS in tRNA1 Leu expression has been reported. We show here that FIS binds to a site upstream of the leuVpromoter (centered at −71) and that it directly stimulatesleuV transcription in vitro. A mutation in the FIS binding site reduces transcription from a leuV promoter in strains containing FIS but has no effect on transcription in strains lacking FIS, indicating that FIS contributes to leuV expression in vivo. We also find that RNA polymerase forms an unusual heparin-sensitive complex with the leuV promoter, having a downstream protection boundary of ∼−7, and that the first two nucleotides of the transcript, GTP and UTP, are required for formation of a heparin-stable complex that extends downstream of the transcription start site. These studies have implications for the regulation of leuV transcription.


2006 ◽  
Vol 188 (24) ◽  
pp. 8352-8359 ◽  
Author(s):  
India Hook-Barnard ◽  
Xanthia B. Johnson ◽  
Deborah M. Hinton

ABSTRACT Escherichia coli σ70-dependent promoters have typically been characterized as either −10/−35 promoters, which have good matches to both the canonical −10 and the −35 sequences or as extended −10 promoters (TGn/−10 promoters), which have the TGn motif and an excellent match to the −10 consensus sequence. We report here an investigation of a promoter, Pminor, that has a nearly perfect match to the −35 sequence and has the TGn motif. However, Pminor contains an extremely poor σ70 −10 element. We demonstrate that Pminor is active both in vivo and in vitro and that mutations in either the −35 or the TGn motif eliminate its activity. Mutation of the TGn motif can be compensated for by mutations that make the −10 element more canonical, thus converting the −35/TGn promoter to a −35/−10 promoter. Potassium permanganate footprinting on the nontemplate and template strands indicates that when polymerase is in a stable (open) complex with Pminor, the DNA is single stranded from positions −11 to +4. We also demonstrate that transcription from Pminor incorporates nontemplated ribonucleoside triphosphates at the 5′ end of the Pminor transcript, which results in an anomalous assignment for the start site when primer extension analysis is used. Pminor represents one of the few −35/TGn promoters that have been characterized and serves as a model for investigating functional differences between these promoters and the better-characterized −10/−35 and extended −10 promoters used by E. coli RNA polymerase.


1999 ◽  
Vol 181 (20) ◽  
pp. 6411-6418 ◽  
Author(s):  
Ji Yang ◽  
Peixiang Wang ◽  
A. J. Pittard

ABSTRACT Previously, we have shown that expression of the Escherichia coli aroP P2 promoter is partially repressed by the TyrR protein alone and strongly repressed by the TyrR protein in the presence of the coeffector tyrosine or phenylalanine (P. Wang, J. Yang, and A. J. Pittard, J. Bacteriol. 179:4206–4212, 1997). Here we present in vitro results showing that the TyrR protein and RNA polymerase can bind simultaneously to the aroP P2 promoter. In the presence of tyrosine, the TyrR protein inhibits open complex formation at the P2 promoter, whereas in the absence of any coeffector or in the presence of phenylalanine, the TyrR protein inhibits a step(s) following the formation of open complexes. We also present mutational evidence which implicates the N-terminal domain of the TyrR protein in the repression of P2 expression. The TyrR binding site of aroP, which includes one weak and one strong TyrR box, is located 5 bp downstream of the transcription start site of P2. Results from a mutational analysis show that the strong box (which is located more closely to the P2 promoter), but not the weak box, plays a critical role in P2 repression.


Sign in / Sign up

Export Citation Format

Share Document