A New in Vitro Model for Agonist-Induced Communication between Microvascular Endothelial Cells

2000 ◽  
Vol 60 (3) ◽  
pp. 222-231 ◽  
Author(s):  
Yves Ouellette ◽  
Darcy Lidington ◽  
Christian G. Naus ◽  
Karel Tyml
Blood ◽  
2006 ◽  
Vol 109 (4) ◽  
pp. 1752-1755 ◽  
Author(s):  
Christopher C. Silliman ◽  
Brian R. Curtis ◽  
Patricia M. Kopko ◽  
Samina Y. Khan ◽  
Marguerite R. Kelher ◽  
...  

Abstract Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality. Antibodies to HNA-3a are commonly implicated in TRALI. We hypothesized that HNA-3a antibodies prime neutrophils (PMNs) and cause PMN-mediated cytotoxicity through a two-event pathogenesis. Isolated HNA-3a+ or HNA-3a− PMNs were incubated with plasma containing HNA-3a antibodies implicated in TRALI, and their ability to prime the oxidase was measured. Human pulmonary microvascular endothelial cells (HMVECs) were activated with endotoxin or buffer, HNA-3a+ or HNA-3a− PMNs were added, and the coculture was incubated with plasma ± antibodies to HNA-3a. PMN-mediated damage was measured by counting viable HMVECs/mm2. Plasma containing HNA-3a antibodies primed the fMLP-activated respiratory burst of HNA-3a+, but not HNA-3a−, PMNs and elicited PMN-mediated damage of LPS-activated HMVECs when HNA-3a+, but not HNA-3a−, PMNs were used. Thus, antibodies to HNA-3a primed PMNs and caused PMN-mediated HMVEC cytotoxicity in a two-event model identical to biologic response modifiers implicated in TRALI.


1997 ◽  
Vol 273 (1) ◽  
pp. L22-L30 ◽  
Author(s):  
P. M. Chetham ◽  
H. A. Guldemeester ◽  
N. Mons ◽  
G. H. Brough ◽  
J. P. Bridges ◽  
...  

Intracellular mechanisms responsible for endothelial cell disruption are unknown, although either elevated cytosolic Ca2+ ([Ca2+]i) or decreased adenosine 3',5'-cyclic monophosphate (cAMP) promotes permeability. Recent identification that Ca(2+)-inhibitable adenylyl cyclase establishes an inverse relationship between [Ca2+]i and cAMP in macrovascular endothelial cells provided a possible mechanism of development of permeability. However, these data utilized an in vitro model; lacking was evidence supporting 1) expression of Ca(2+)-inhibitable adenylyl cyclase in pulmonary microvascular endothelium and 2) Ca2+ inhibition of adenylyl cyclase and cAMP content as a paradigm for inflammatory mediator-induced permeability in the intact circulation. We therefore addressed these issues in microvascular endothelial cells derived from rat lung and in an isolated perfused rat lung preparation. Results demonstrate expression of a Ca(2+)-inhibitable adenylyl cyclase in microvascular endothelial cells. Furthermore, data suggest that Ca2+ inhibition of adenylyl cyclase is necessary for development of microvascular permeability in the intact circulation. We conclude Ca2+ inhibition of cAMP represents a critical step in genesis of microvascular permeability in the intact pulmonary circulation.


Sign in / Sign up

Export Citation Format

Share Document