Protein phosphorylation in tobacco plants with systemic resistance induced by tobacco mosaic virus

1995 ◽  
Vol 47 (4) ◽  
pp. 269-283 ◽  
Author(s):  
Xiang S. Ye ◽  
S.A. Avdiushko ◽  
J. Kuć
2014 ◽  
Vol 111 ◽  
pp. 14-18 ◽  
Author(s):  
Yongguang Han ◽  
Yue Luo ◽  
Shirong Qin ◽  
Lei Xi ◽  
Bo Wan ◽  
...  

2020 ◽  
Vol 110 (6) ◽  
pp. 1189-1198
Author(s):  
Defu Wang ◽  
Baoxia Wang ◽  
Jiangran Wang ◽  
Shuting Wang ◽  
Weiyu Wang ◽  
...  

The harpin protein Hpa1 has various beneficial effects in plants, such as promoting plant growth and inducing pathogen resistance. Our previous study found that Hpa1 could significantly alleviate the mosaic symptoms of tobacco mosaic virus (TMV) in Pinellia ternata, indicating that Hpa1 can effectively stimulate resistance. Here, the potential mechanism of disease resistance and field applicability of Hpa1 against TMV in P. ternata were further investigated. The results showed that 15 µg ml−1 Hpa1 had stronger antiviral activity than the control, and its protective effect was better than its curative effect. Furthermore, Hpa1 could significantly induce an increase in defense-related enzyme activity, including polyphenol oxidase, peroxidase, catalase, and superoxide dismutase, as well as increase the expression of disease resistance-related genes (PR1, PR3, PR5, and PDF1.2). Concurrently, Hpa1 significantly increased the content of some disease resistance-related substances, including hydrogen peroxide, phenolics, and callose, whereas the content of malondialdehyde was reduced. In addition, field application analysis demonstrated that Hpa1 could effectively elicit a defense response against TMV in P. ternata. Our findings propose a mechanism by which Hpa1 can prevent TMV infection in Pinellia by inducing systemic resistance, thereby providing an environmentally friendly approach for the use of Hpa1 in large-scale applications to improve TMV resistance in Pinellia.


2002 ◽  
Vol 129 (3) ◽  
pp. 1032-1044 ◽  
Author(s):  
Andrzej Talarczyk ◽  
Magdalena Krzymowska ◽  
Wojciech Borucki ◽  
Jacek Hennig

2010 ◽  
Vol 23 (11) ◽  
pp. 1448-1459 ◽  
Author(s):  
Kerstin Höller ◽  
Lóránt Király ◽  
András Künstler ◽  
Maria Müller ◽  
Gábor Gullner ◽  
...  

Sulfur-induced resistance, also known as sulfur-enhanced defense (SIR/SED) was investigated in Nicotiana tabacum cv. Samsun nn during compatible interaction with Tobacco mosaic virus (TMV) in correlation with glutathione metabolism. To evaluate the influence of sulfur nutritional status on virus infection, tobacco plants were treated with nutrient solutions containing either sufficient sulfate (+S) or no sulfate (−S). Sufficient sulfate supply resulted in a suppressed and delayed symptom development and diminished virus accumulation over a period of 14 days after inoculation as compared with −S conditions. Expression of the defense marker gene PR-1a was markedly upregulated in sulfate-treated plants during the first day after TMV inoculation. The occurrence of SIR/SED correlated with a higher level of activity of sulfate assimilation, cysteine, and glutathione metabolism in plants treated with sulfate. Additionally, two key genes involved in cysteine and glutathione biosynthesis (encoding adenosine 5′-phosphosulfate reductase and γ-glutamylcysteine synthetase, respectively) were upregulated within the first day after TMV inoculation under +S conditions. Sulfate withdrawal from the soil was accelerated at the beginning of the infection, whereas it declined in the long term, leading to an accumulation of sulfur in the soil of plants grown with sulfate. This observation could be correlated with a decrease in sulfur contents in TMV-infected leaves in the long term. In summary, this is the first study that demonstrates a link between the activation of cysteine and glutathione metabolism and the induction of SIR/SED during a compatible plant-virus interaction in tobacco plants, indicating a general mechanism behind SIR/SED.


Sign in / Sign up

Export Citation Format

Share Document