glutathione metabolism
Recently Published Documents


TOTAL DOCUMENTS

915
(FIVE YEARS 308)

H-INDEX

68
(FIVE YEARS 9)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yinchuan Li ◽  
Panpan Mi ◽  
Jiabao Wu ◽  
Yunge Tang ◽  
Xiaohua Liu ◽  
...  

Leydig cells (Lc), located in the interstitial space of the testis between seminiferous tubules, produce 95% of testosterone in male individuals, which is pivotal for male sexual differentiation, spermatogenesis, and maintenance of the male secondary sex characteristics. Lc are prone to senescence in aging testes, resulting in compromised androgen synthesis capability upon aging. However, little is known about whether Lc undergo senescence in a chronic inflammatory environment. To investigate this question, mouse models of experimental autoimmune orchitis (EAO) were used, and Lc were analyzed by high throughput scRNA-Seq. Data were screened and analyzed by correlating signaling pathways with senescence, apoptosis, androgen synthesis, and cytokine/chemokine signaling pathways. EAO did induce Lc senescence, and Lc senescence in turn antagonized androgen synthesis. Based on the correlation screening of pathways inducing Lc senescence, a plethora of pathways were found to play potential roles in triggering Lc senescence during EAO, among which the Arf6 and angiopoietin receptor pathways were highly correlated with senescence signature. Notably, complement and interstitial fibrosis activated by EAO worsened Lc senescence and strongly antagonized androgen synthesis. Furthermore, most proinflammatory cytokines enhanced both senescence and apoptosis in Lc and spermatogonia (Sg) during EAO, and proinflammatory cytokine antagonism of the glutathione metabolism pathway may be key in inducing cellular senescence during EAO.


2022 ◽  
Vol 12 ◽  
Author(s):  
Dongqing Yang ◽  
Jihao Zhao ◽  
Chen Bi ◽  
Liuyin Li ◽  
Zhenlin Wang

Wheat growth and nitrogen (N) uptake gradually decrease in response to high NH4+/NO3– ratio. However, the mechanisms underlying the response of wheat seedling roots to changes in NH4+/NO3– ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH4+/NO3– ratios (Na: 100/0; Nr1: 75/25, Nr2: 50/50, Nr3: 25/75, and Nn: 0/100). High NH4+/NO3– ratio significantly reduced leaf relative chlorophyll content, Fv/Fm, and ΦII values. Both total root length and specific root length decreased with increasing NH4+/NO3– ratios. Moreover, the rise in NH4+/NO3– ratio significantly promoted O2– production. Furthermore, transcriptome sequencing and tandem mass tag-based quantitative proteome analyses identified 14,376 differentially expressed genes (DEGs) and 1,819 differentially expressed proteins (DEPs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that glutathione metabolism and phenylpropanoid biosynthesis were the main two shared enriched pathways across ratio comparisons. Upregulated DEGs and DEPs involving glutathione S-transferases may contribute to the prevention of oxidative stress. An increment in the NH4+/NO3– ratio induced the expression of genes and proteins involved in lignin biosynthesis, which increased root lignin content. Additionally, phylogenetic tree analysis showed that both A0A3B6NPP6 and A0A3B6LM09 belong to the cinnamyl-alcohol dehydrogenase subfamily. Fifteen downregulated DEGs were identified as high-affinity nitrate transporters or nitrate transporters. Upregulated TraesCS3D02G344800 and TraesCS3A02G350800 were involved in ammonium transport. Downregulated A0A3B6Q9B3 is involved in nitrate transport, whereas A0A3B6PQS3 is a ferredoxin-nitrite reductase. This may explain why an increase in the NH4+/NO3– ratio significantly reduced root NO3–-N content but increased NH4+-N content. Overall, these results demonstrated that increasing the NH4+/NO3– ratio at the seedling stage induced the accumulation of reactive oxygen species, which in turn enhanced root glutathione metabolism and lignification, thereby resulting in increased root oxidative tolerance at the cost of reducing nitrate transport and utilization, which reduced leaf photosynthetic capacity and, ultimately, plant biomass accumulation.


2022 ◽  
Author(s):  
Yingying Fan ◽  
Ruili Zhang ◽  
Xiaoqin Liu ◽  
Yushan Ma ◽  
Yan Wang ◽  
...  

Abstract BackgroundBlack spot disease, caused by Alternaria altrenata, is one of the most destructive diseases of jujube worldwide. To better understand the resistance mechanisms of jujube to A. altrenata infection to be able to improve disease control and resistance breeding. Two different cultivars, Zizyphus jujuba Mill. var. Jun jujube (susceptible) and Zizyphus jujuba Mill. var. Hui jujube (resistant), were tested. ResultsIn this study, we identified 2235 differentially expressed genes (DEGs) in the disease-resistant cultivar and 4958 in the susceptible cultivar. To better understand these DEGs, the datasets were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Most of them were associated with plant phytohormone synthesis and signal transduction, flavonoid synthesis, and glutathione metabolism. The expression of 6 DEGs associated with disease resistance were detected by real time-quantitative polymerase chain reaction (RT-qPCR), consistent with the results of Illumina transcriptome sequencing. Moreover, the expression level of the six DEGs differently in Jun jujube and Hui jujube, verified they are defense response factors. ConclusionsThe present study identified several candidate resistance genes and signal transduction pathways that may contribute to black spot disease resistance in jujube, which will assist the investigation of resistance mechanisms in the response of jujube to A. altrenata infection.


2022 ◽  
Author(s):  
Dipak K. Sahoo ◽  
Dana C. Borcherding ◽  
Lawrance Chandra ◽  
Albert E. Jergens ◽  
Todd Atherly ◽  
...  

Abstract Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well characterized, little is known about LPS and intestinal epithelium interactions. In this study, we explored the differential effect of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases, such as Inflammatory Bowel Disease (IBD) and GI mast cell tumor. The study objective was to analyze LPS-induced modulation of signaling pathways involving the intestinal epithelia and critical to colorectal cancer development in the context of IBD or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, down-regulation of several cancer-associated genes like CRYZL1, Gpatch4, SLC7A1, ATP13A2, and ZNF358 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), thiamine and purine metabolism (TAP2, EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the cross-talk between LPS/TLR4 signal transduction pathway and several metabolic pathways, such as fatty acid degradation and biosynthesis, and purine, thiamine, arachidonic acid, and glutathione metabolism, may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hui-Liang Li ◽  
Ying Wang ◽  
Dong Guo ◽  
Jia-Hong Zhu ◽  
Shi-Qing Peng

The rubber tree (Hevea brasiliensis Muell. Arg.) is a tropical tree species that produce natural rubber. Self-rooted juvenile clones (SRJCs) are novel rubber tree planting materials developed through primary somatic embryogenesis. SRJCs have a higher rubber yield compared with donor clones (DCs). The molecular basis underlying increased rubber yield in SRJCs remains largely unknown. Here, the latex from SRJCs and DCs were collected for strand-specific and small RNA-seq methods. A total of 196 differentially expressed long noncoding RNAs (DELs), and 11 differentially expressed microRNAs were identified in latex between SRJCs and DCs. Targeted genes of DELs were markedly enriched for various biological pathways related to plant hormone signal transduction, photosynthesis, glutathione metabolism, and amino acids biosynthesis. DELs probably acted as cis-acting regulation was calculated, and these DELs relevant to potentially regulate rubber biosynthesis, reactive oxygen species metabolism, and epigenetic modification. Furthermore, the DELs acting as microRNA targets were studied. The interaction of microRNA and DELs might involve in the regulation of natural rubber biosynthesis.


2022 ◽  
Vol 10 ◽  
pp. 2050313X2110685
Author(s):  
Lee Connolly ◽  
Ed Briggs

Pyroglutamic acid is an endogenous organic acid and a metabolite in the γ-glutamyl cycle, involved in glutathione metabolism. Accumulation of pyroglutamic acid is a rare cause of high anion gap metabolic acidosis. There are multiple risk factors for pyroglutamic acid accumulation, such as chronic paracetamol use and sepsis. In this case report, we discuss how we came to this diagnosis, how it was subsequently managed and why it is an important consideration for critically ill patients with risk factors who are likely to end up in an intensive care setting. Pyroglutamic acid recognition and treatment could benefit patients in the critically ill population as pyroglutamic acid is a rare cause of high anion gap metabolic acidosis, which is likely under-recognised and easily treated. Inappropriate management of metabolic disorders can contribute to patient morbidity and mortality. Therefore, the recognition and appropriate management of pyroglutamic acidaemia could benefit patients with risk factors for its development in a critical care setting.


Metabolites ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Animesh Acharjee ◽  
Jon Hazeldine ◽  
Alina Bazarova ◽  
Lavanya Deenadayalu ◽  
Jinkang Zhang ◽  
...  

Background: Recent advances in emergency medicine and the co-ordinated delivery of trauma care mean more critically-injured patients now reach the hospital alive and survive life-saving operations. Indeed, between 2008 and 2017, the odds of surviving a major traumatic injury in the UK increased by nineteen percent. However, the improved survival rates of severely-injured patients have placed an increased burden on the healthcare system, with major trauma a common cause of intensive care unit (ICU) admissions that last ≥10 days. Improved understanding of the factors influencing patient outcomes is now urgently needed. Methods: We investigated the serum metabolomic profile of fifty-five major trauma patients across three post-injury phases: acute (days 0–4), intermediate (days 5–14) and late (days 15–112). Using ICU length of stay (LOS) as a clinical outcome, we aimed to determine whether the serum metabolome measured at days 0–4 post-injury for patients with an extended (≥10 days) ICU LOS differed from that of patients with a short (<10 days) ICU LOS. In addition, we investigated whether combining metabolomic profiles with clinical scoring systems would generate a variable that would identify patients with an extended ICU LOS with a greater degree of accuracy than models built on either variable alone. Results: The number of metabolites unique to and shared across each time segment varied across acute, intermediate and late segments. A one-way ANOVA revealed the most variation in metabolite levels across the different time-points was for the metabolites lactate, glucose, anserine and 3-hydroxybutyrate. A total of eleven features were selected to differentiate between <10 days ICU LOS vs. >10 days ICU LOS. New Injury Severity Score (NISS), testosterone, and the metabolites cadaverine, urea, isoleucine, acetoacetate, dimethyl sulfone, syringate, creatinine, xylitol, and acetone form the integrated biomarker set. Using metabolic enrichment analysis, we found valine, leucine and isoleucine biosynthesis, glutathione metabolism, and glycine, serine and threonine metabolism were the top three pathways differentiating ICU LOS with a p < 0.05. A combined model of NISS and testosterone and all nine selected metabolites achieved an AUROC of 0.824. Conclusions: Differences exist in the serum metabolome of major trauma patients who subsequently experience a short or prolonged ICU LOS in the acute post-injury setting. Combining metabolomic data with anatomical scoring systems allowed us to discriminate between these two groups with a greater degree of accuracy than that of either variable alone.


2021 ◽  
Author(s):  
Yuanyuan Tian ◽  
Jiao Zhao ◽  
Ju Huang ◽  
Haiying Zhang ◽  
Fushun Ni ◽  
...  

Abstract Background:Tumor endothelial cells (TECs) play an indispensable role in tumor growth and metastasis. Compared with normal endothelial cells (NECs), TECs exhibit unique phenotypic and functional heterogeneity in terms of metabolism, genetics, and transcriptomics. It is not only the key to coordinate tumor angiogenesis, but also an important factor of immune regulation in the tumor microenvironment. In recent years, the role of TECs in tumor metabolism and invasion has been continuously reported. However, the research on the mechanism behind the complex functions of TECs is still at the basic stage. We use Oxford Nanopore Technology (ONT) three-generation full-length transcriptome sequencing to detect all genetic structural changes in the transcriptome of mouse TECs 2H-11 and mouse NECs SVEC4-10.Results: In Tumor endothelial cells 2H-11,1847genes are up-regulated and 1202 genes are down-regulated. According to the Gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs), we found that different functional trends related to metabolic processes, developmental processes, localization, immune system processes, and locomotion are the main reasons for the differences. DEGs are mainly enriched in signal pathways related to cancer, immunity and metabolism, involving Pathways in cancer,Antigen processing and presentation , Proteoglycans in cancer, Focal adhesion, MAPK signaling pathway ,Protein digestion and absorption,ECM-receptor interaction,PI3K-Akt signaling pathway and Glutathione metabolism. We also obtained the structural variation of transcripts such as alternative splicing, gene fusion, and alternative polyadenylation and accurately quantified the expression of the transcript. Some of our results have been confirmed in other documents. But other data have not been reported yet, which is the focus of our future exploration.Conclusion: We try to use transcriptomics and bioinformatics methods to characterize tumor endothelial cell-related genes and signaling pathways.It could help better understand the molecular mechanisms of tumor endothelial cells involved in tumorigenesis and development. DEGs in key pathways may be potential diagnostic markers or therapeutic targets of TECs. Our data also provide useful genetic resources for improving the genome and transcriptome annotations of TECs and NECs.


2021 ◽  
Vol 13 ◽  
Author(s):  
Nawfel Mokrane ◽  
Yassin Snabi ◽  
Thierry Cens ◽  
Janique Guiramand ◽  
Pierre Charnet ◽  
...  

The regulation of the redox status involves the activation of intracellular pathways as Nrf2 which provides hormetic adaptations against oxidative stress in response to environmental stimuli. In the brain, Nrf2 activation upregulates the formation of glutathione (GSH) which is the primary antioxidant system mainly produced by astrocytes. Astrocytes have also been shown to be themselves the target of oxidative stress. However, how changes in the redox status itself could impact the intracellular Ca2+ homeostasis in astrocytes is not known, although this could be of great help to understand the neuronal damage caused by oxidative stress. Indeed, intracellular Ca2+ changes in astrocytes are crucial for their regulatory actions on neuronal networks. We have manipulated GSH concentration in astroglioma cells with selective inhibitors and activators of the enzymes involved in the GSH cycle and analyzed how this could modify Ca2+ homeostasis. IP3-mediated store-operated calcium entry (SOCE), obtained after store depletion elicited by Gq-linked purinergic P2Y receptors activation, are either sensitized or desensitized, following GSH depletion or increase, respectively. The desensitization may involve decreased expression of the proteins STIM2, Orai1, and Orai3 which support SOCE mechanism. The sensitization process revealed by exposing cells to oxidative stress likely involves the increase in the activity of Calcium Release-Activated Channels (CRAC) and/or in their membrane expression. In addition, we observe that GSH depletion drastically impacts P2Y receptor-mediated changes in membrane currents, as evidenced by large increases in Ca2+-dependent K+ currents. We conclude that changes in the redox status of astrocytes could dramatically modify Ca2+ responses to Gq-linked GPCR activation in both directions, by impacting store-dependent Ca2+-channels, and thus modify cellular excitability under purinergic stimulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoying Pan ◽  
Junbiao Chen ◽  
Aiguo Yang ◽  
Qinghua Yuan ◽  
Weicai Zhao ◽  
...  

Bacterial wilt (BW) caused by Ralstonia solanacearum (R. solanacearum), is a vascular disease affecting diverse solanaceous crops and causing tremendous damage to crop production. However, our knowledge of the mechanism underlying its resistance or susceptibility is very limited. In this study, we characterized the physiological differences and compared the defense-related transcriptomes of two tobacco varieties, 4411-3 (highly resistant, HR) and K326 (moderately resistant, MR), after R. solanacearum infection at 0, 10, and 17 days after inoculation (dpi). A total of 3967 differentially expressed genes (DEGs) were identified between the HR and MR genotypes under mock condition at three time points, including1395 up-regulated genes in the HR genotype and 2640 up-regulated genes in the MR genotype. Also, 6,233 and 21,541 DEGs were induced in the HR and MR genotypes after R. solanacearum infection, respectively. Furthermore, GO and KEGG analyses revealed that DEGs in the HR genotype were related to the cell wall, starch and sucrose metabolism, glutathione metabolism, ABC transporters, endocytosis, glycerolipid metabolism, and glycerophospholipid metabolism. The defense-related genes generally showed genotype-specific regulation and expression differences after R. solanacearum infection. In addition, genes related to auxin and ABA were dramatically up-regulated in the HR genotype. The contents of auxin and ABA in the MR genotype were significantly higher than those in the HR genotype after R. solanacearum infection, providing insight into the defense mechanisms of tobacco. Altogether, these results clarify the physiological and transcriptional regulation of R. solanacearum resistance infection in tobacco, and improve our understanding of the molecular mechanism underlying the plant-pathogen interaction.


Sign in / Sign up

Export Citation Format

Share Document