Competitive Coexistence in a Seasonally Fluctuating Environment II. Multiple Stable States and Invasion Success

1993 ◽  
Vol 44 (3) ◽  
pp. 374-402 ◽  
Author(s):  
T. Namba ◽  
S. Takahashi
2013 ◽  
Vol 87 (6) ◽  
Author(s):  
Zhengjia Wang ◽  
Cheng-Chung Chang ◽  
Siang-Jie Hong ◽  
Yu-Jane Sheng ◽  
Heng-Kwong Tsao

2016 ◽  
Author(s):  
Ricard V. Solé ◽  
Raúl Montañez ◽  
Salvador Duran Nebreda ◽  
Daniel Rodriguez-Amor ◽  
Blai Vidiella ◽  
...  

Ecosystems are complex systems, currently experiencing several threats associated with global warming, intensive exploitation, and human-driven habitat degradation. Such threats are pushing ecosystems to the brink of collapse. Because of a general presence of multiple stable states, including states involving population extinction, and due to intrinsic nonlinearities associated with feedback loops, collapse can occur in a catastrophic manner. Such catastrophic shifts have been suggested to pervade many of the future transitions affecting ecosystems at many different scales. Many studies have tried to delineate potential warning signals predicting such ongoing shifts but little is known about how such transitions might be effectively prevented. It has been recently suggested that a potential path to prevent or modify the outcome of these transitions would involve designing synthetic organisms and synthetic ecological interactions that could push these endangered systems out of the critical boundaries. Four classes of such ecological engineering designs orTerraformation motifshave been defined in a qualitative way. Here we develop the simplest mathematical models associated with these motifs, defining the expected stability conditions and domains where the motifs shall properly work.


2020 ◽  
Vol 16 (5) ◽  
pp. e1007934
Author(s):  
Clare I. Abreu ◽  
Vilhelm L. Andersen Woltz ◽  
Jonathan Friedman ◽  
Jeff Gore

2016 ◽  
Vol 43 (12) ◽  
pp. 6324-6331 ◽  
Author(s):  
G. Lasslop ◽  
V. Brovkin ◽  
C. H. Reick ◽  
S. Bathiany ◽  
S. Kloster

2018 ◽  
Vol 115 (32) ◽  
pp. E7462-E7468 ◽  
Author(s):  
Madeleine Bonsma-Fisher ◽  
Dominique Soutière ◽  
Sidhartha Goyal

Features of the CRISPR-Cas system, in which bacteria integrate small segments of phage genome (spacers) into their DNA to neutralize future attacks, suggest that its effect is not limited to individual bacteria but may control the fate and structure of whole populations. Emphasizing the population-level impact of the CRISPR-Cas system, recent experiments show that some bacteria regulate CRISPR-associated genes via the quorum sensing (QS) pathway. Here we present a model that shows that from the highly stochastic dynamics of individual spacers under QS control emerges a rank-abundance distribution of spacers that is time invariant, a surprising prediction that we test with dynamic spacer-tracking data from literature. This distribution depends on the state of the competing phage–bacteria population, which due to QS-based regulation may coexist in multiple stable states that vary significantly in their phage-to-bacterium ratio, a widely used ecological measure to characterize microbial systems.


2004 ◽  
Vol 16 (7) ◽  
pp. 1385-1412 ◽  
Author(s):  
Peter E. Latham ◽  
Sheila Nirenberg

Cortical neurons are predominantly excitatory and highly interconnected. In spite of this, the cortex is remarkably stable: normal brains do not exhibit the kind of runaway excitation one might expect of such a system. How does the cortex maintain stability in the face of this massive excitatory feedback? More importantly, how does it do so during computations, which necessarily involve elevated firing rates? Here we address these questions in the context of attractor networks—networks that exhibit multiple stable states, or memories. We find that such networks can be stabilized at the relatively low firing rates observed in vivo if two conditions are met: (1) the background state, where all neurons are firing at low rates, is inhibition dominated, and (2) the fraction of neurons involved in a memory is above some threshold, so that there is sufficient coupling between the memory neurons and the background. This allows “dynamical stabilization” of the attractors, meaning feedback from the pool of background neurons stabilizes what would otherwise be an unstable state. We suggest that dynamical stabilization may be a strategy used for a broad range of computations, not just those involving attractors.


10.2307/5037 ◽  
1990 ◽  
Vol 59 (3) ◽  
pp. 1147 ◽  
Author(s):  
Holly T. Dublin ◽  
A.R.E. Sinclair ◽  
J. McGlade

Sign in / Sign up

Export Citation Format

Share Document