scholarly journals Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback

2016 ◽  
Vol 43 (12) ◽  
pp. 6324-6331 ◽  
Author(s):  
G. Lasslop ◽  
V. Brovkin ◽  
C. H. Reick ◽  
S. Bathiany ◽  
S. Kloster

2021 ◽  
Author(s):  
Jonathan Barichivich ◽  
Philippe Peylin ◽  
Valérie Daux ◽  
Camille Risi ◽  
Jina Jeong ◽  
...  

<p>Gradual anthropogenic warming and parallel changes in the major global biogeochemical cycles are slowly pushing forest ecosystems into novel growing conditions, with uncertain consequences for ecosystem dynamics and climate. Short-term forest responses (i.e., years to a decade) to global change factors are relatively well understood and skilfully simulated by land surface models (LSMs). However, confidence on model projections weaken towards longer time scales and to the future, mainly because the long-term responses (i.e., decade to century) of these models remain unconstrained. This issue limits confidence on climate model projections. Annually-resolved tree-ring records, extending back to pre-industrial conditions, have the potential to constrain model responses at interannual to centennial time scales. Here, we constrain the representation of tree growth and physiology in the ORCHIDEE global land surface model using the simulated interannual variability of tree-ring width and carbon (Δ<sup>13</sup>C) and oxygen (δ<sup>18</sup>O) stable isotopes in six sites in boreal and temperate Europe.  The model simulates Δ<sup>13</sup>C (r = 0.31-0.80) and δ<sup>18</sup>O (r = 0.36-0.74) variability better than tree-ring width variability (r < 0.55), with an overall skill similar to that of other state-of-the-art models such as MAIDENiso and LPX-Bern. These results show that growth variability is not well represented, and that the parameterization of leaf-level physiological responses to drought stress in the temperate region can be improved with tree-ring data. The representation of carbon storage and remobilization dynamics is critical to improve the realism of simulated growth variability, temporal carrying over and recovery of forest ecosystems after climate extremes. The simulated physiological response to rising CO2 over the 20th century is consistent with tree-ring data in the temperate region, despite an overestimation of seasonal drought stress and stomatal control on photosynthesis. Photosynthesis correlates directly with isotopic variability, but correlations with δ<sup>18</sup>O combine physiological effects and climate variability impacts on source water signatures. The integration of tree-ring data (i.e. the triple constraint: width, Δ<sup>13</sup>C and δ<sup>18</sup>O) and land surface models as demonstrated here should contribute towards reducing current uncertainties in forest carbon and water cycling.</p>



Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1362 ◽  
Author(s):  
Mustafa Berk Duygu ◽  
Zuhal Akyürek

Soil moisture content is one of the most important parameters of hydrological studies. Cosmic-ray neutron sensing is a promising proximal soil moisture sensing technique at intermediate scale and high temporal resolution. In this study, we validate satellite soil moisture products for the period of March 2015 and December 2018 by using several existing Cosmic Ray Neutron Probe (CRNP) stations of the COSMOS database and a CRNP station that was installed in the south part of Turkey in October 2016. Soil moisture values, which were inferred from the CRNP station in Turkey, are also validated using a time domain reflectometer (TDR) installed at the same location and soil water content values obtained from a land surface model (Noah LSM) at various depths (0.1 m, 0.3 m, 0.6 m and 1.0 m). The CRNP has a very good correlation with TDR where both measurements show consistent changes in soil moisture due to storm events. Satellite soil moisture products obtained from the Soil Moisture and Ocean Salinity (SMOS), the METOP-A/B Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), Advanced Microwave Scanning Radiometer 2 (AMSR2), Climate Change Initiative (CCI) and a global land surface model Global Land Data Assimilation System (GLDAS) are compared with the soil moisture values obtained from CRNP stations. Coefficient of determination ( r 2 ) and unbiased root mean square error (ubRMSE) are used as the statistical measures. Triple Collocation (TC) was also performed by considering soil moisture values obtained from different soil moisture products and the CRNPs. The validation results are mainly influenced by the location of the sensor and the soil moisture retrieval algorithm of satellite products. The SMAP surface product produces the highest correlations and lowest errors especially in semi-arid areas whereas the ASCAT product provides better results in vegetated areas. Both global and local land surface models’ outputs are highly compatible with the CRNP soil moisture values.



2014 ◽  
Vol 7 (1) ◽  
pp. 361-386 ◽  
Author(s):  
D. N. Walters ◽  
K. D. Williams ◽  
I. A. Boutle ◽  
A. C. Bushell ◽  
J. M. Edwards ◽  
...  

Abstract. We describe Global Atmosphere 4.0 (GA4.0) and Global Land 4.0 (GL4.0): configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) community land surface model developed for use in global and regional climate research and weather prediction activities. GA4.0 and GL4.0 are based on the previous GA3.0 and GL3.0 configurations, with the inclusion of developments made by the Met Office and its collaborators during its annual development cycle. This paper provides a comprehensive technical and scientific description of GA4.0 and GL4.0 as well as details of how these differ from their predecessors. We also present the results of some initial evaluations of their performance. Overall, performance is comparable with that of GA3.0/GL3.0; the updated configurations include improvements to the science of several parametrisation schemes, however, and will form a baseline for further ongoing development.



2017 ◽  
Vol 10 (4) ◽  
pp. 1487-1520 ◽  
Author(s):  
David Walters ◽  
Ian Boutle ◽  
Malcolm Brooks ◽  
Thomas Melvin ◽  
Rachel Stratton ◽  
...  

Abstract. We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model's physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year.



2013 ◽  
Vol 6 (2) ◽  
pp. 2813-2881 ◽  
Author(s):  
D. N. Walters ◽  
K. D. Williams ◽  
I. A. Boutle ◽  
A. C. Bushell ◽  
J. M. Edwards ◽  
...  

Abstract. We describe Global Atmosphere 4.0 (GA4.0) and Global Land 4.0 (GL4.0): configurations of the Met Office Unified Model and JULES community land surface model developed for use in global and regional climate research and weather prediction activities. GA4.0 and GL4.0 are based on the previous GA3.0 and GL3.0 configurations, with the inclusion of developments made by the Met Office and its collaborators during its annual development cycle. This paper provides a comprehensive technical and scientific description of GA4.0 and GL4.0 as well as details of how these differ from their predecessors. We also present the results of some initial evaluations of their performance. These show that, overall, performance is comparable with that of GA3.0/GL3.0; the updated configurations do, however, include improvements to the science of several parametrization schemes and will form a baseline for further ongoing development.



2020 ◽  
Author(s):  
Tea Thum ◽  
Julia E. S. M. Nabel ◽  
Aki Tsuruta ◽  
Tuula Aalto ◽  
Edward J. Dlugokencky ◽  
...  

Abstract. The trajectories of soil carbon (C) in the changing climate are of utmost importance, as soil carbon is a substantial carbon storage with a large potential to impact the atmospheric carbon dioxide (CO2) burden. Atmospheric CO2 observations integrate all processes affecting C exchange between the surface and the atmosphere. Therefore they provide a benchmark for carbon cycle models. We evaluated two distinct soil carbon models (CBALANCE and YASSO) that were implemented to a global land surface model (JSBACH) against atmospheric CO2 observations. We transported the biospheric carbon fluxes obtained by JSBACH using the atmospheric transport model TM5 to obtain atmospheric CO2. We then compared these results with surface observations from Global Atmosphere Watch (GAW) stations as well as with column XCO2 retrievals from the GOSAT satellite. The seasonal cycles of atmospheric CO2 estimated by the two different soil models differed. The estimates from the CBALANCE soil model were more in line with the surface observations at low latitudes (0 N–45 N) with only 1 % bias in the seasonal cycle amplitude (SCA), whereas YASSO was underestimating the SCA in this region by 32 %. YASSO gave more realistic seasonal cycle amplitudes of CO2 at northern boreal sites (north of 45 N) with underestimation of 15 % compared to 30 % overestimation by CBALANCE. Generally, the estimates from CBALANCE were more successful in capturing the seasonal patterns and seasonal cycle amplitudes of atmospheric CO2 even though it overestimated soil carbon stocks by 225 % (compared to underestimation of 36 % by YASSO) and its predictions of the global distribution of soil carbon stocks was unrealistic. The reasons for these differences in the results are related to the different environmental drivers and their functional dependencies of these two soil carbon models. In the tropical region the YASSO model showed earlier increase in season of the heterotophic respiration since it is driven by precipitation instead of soil moisture as CBALANCE. In the temperate and boreal region the role of temperature is more dominant. There the heterotophic respiration from the YASSO model had larger annual variability, driven by air temperature, compared to the CBALANCE which is driven by soil temperature. The results underline the importance of using sub-yearly data in the development of soil carbon models when they are used in shorter than annual time scales.



2020 ◽  
Author(s):  
Yidi Xu ◽  
Philippe Ciais ◽  
Le Yu ◽  
Wei Li ◽  
Xiuzhi Chen ◽  
...  

Abstract. Oil palm is the most productive oil crop that provides ~40 % of the global vegetable oil supply, with 7 % of the cultivated land devoted to oil plants. The rapid expansion of oil palm cultivation is seen as one of the major cause for deforestation emissions and threatens the conservation of rain forest and swamp areas and their associated ecosystem services in tropical areas. Given the importance of oil palm in oil production and its adverse environmental consequences, it is important to understand the physiological and phenological processes of oil palm and its impacts on the carbon, water and energy cycles. In most global vegetation models, oil palm is represented by generic plant functional types (PFT) without specific representation of its morphological, physical and physiological traits. This would cause biases in the subsequent simulations. In this study, we introduced a new specific PFT for oil palm in the global land surface model ORCHIDEE-MICT (v8.4.2). The specific morphology, phenology and harvest process of oil palm were implemented, and the plant carbon allocation scheme was modified to support the growth of branch, leaf and fruit component of each phytomer. A new age-specific parameterization scheme for photosynthesis, autotrophic respiration, and carbon allocation was also developed for the oil palm PFT, based on observed physiology, and was calibrated by observations. The improved model generally reproduces the leaf area index, biomass density and fruit yield during the life cycle at 14 observation sites. Photosynthesis, carbon allocation and biomass components for oil palm also agree well with observations. This explicit representation of oil palm in global land surface model offers a useful tool for understanding the ecological processes of oil palm growth and assessing the environmental impacts of oil palm plantations.



2017 ◽  
Author(s):  
Arsène Druel ◽  
Philippe Peylin ◽  
Gerhard Krinner ◽  
Philippe Ciais ◽  
Nicolas Viovy ◽  
...  




2014 ◽  
Vol 11 (5) ◽  
pp. 7721-7773 ◽  
Author(s):  
J. A. Holm ◽  
J. Q. Chambers ◽  
W. D. Collins ◽  
N. Higuchi

Abstract. Uncertainties surrounding vegetation response to increased disturbance rates associated with climate change remains a major global change issue for Amazon forests. Additionally, turnover rates computed as the average of mortality and recruitment rates in the Western Amazon basin are doubled when compared to the Central Amazon, and notable gradients currently exist in specific wood density and aboveground biomass (AGB) between these two regions. This study investigates the extent to which the variation in disturbance regimes contributes to these regional gradients. To address these issues, we evaluated disturbance-recovery processes under two scenarios of increased disturbance rates in a complex Central Amazon forest using first ZELIG-TROP, a dynamic vegetation gap model which we calibrated using long-term inventory data, and second using the Community Land Model (CLM), a global land surface model that is part of the Community Earth System Model (CESM). Upon doubling the mortality rate in the Central Amazon to mirror the natural disturbance regime in the Western Amazon of ∼2% mortality, at steady-state, AGB significantly decreased by 41.9% and there was no significant difference between the modeled AGB of 104 Mg C ha−1 and empirical AGB from the western Amazon datasets of 107 Mg C ha−1. We confirm that increases in natural disturbance rates in the Central Amazon will result in terrestrial carbon loss associated with higher turnover. However, different processes were responsible for the reductions in AGB between the models and empirical datasets. We observed that with increased turnover, the subsequent decrease in wood density drives the reduction in AGB in empirical datasets. However, decrease in stand basal area was the driver of the drop in AGB in ZELIG-TROP, and decreased leaf area index (LAI) was the driver in CLM. Further comparisons found that stem density, specific wood density, and basal area growth rates differed between the two Amazonian regions. This suggests that: (1) the variability between regions cannot be entirely explained by the variability in disturbance regime, but rather potentially sensitive to intrinsic environmental factors; or (2) the models are not accurately simulating all forest characteristics in response to increased disturbances. Last, to help quantify the impacts of increased disturbances on climate and the earth system, we evaluated the fidelity of tree mortality and disturbance in a global land surface model: CLM. For a 100% increase in annual mortality rate, both ZELIG-TROP and CLM were in close agreement with each other and predicted a net carbon loss of 41.9 and 49.9%, respectively, with an insignificant effect on aboveground net primary productivity (ANPP). Likewise, a 20% increase in mortality every 50 years (i.e. periodic disturbance treatment) resulted in a reciprocal biomass loss of 18.3 and 18.7% in ZELIG-TROP and CLM, respectively.



Sign in / Sign up

Export Citation Format

Share Document