scholarly journals Functional Analyses and Identification of Two Arginine Residues Essential to the ATP-Utilizing Activity of the Triple Gene Block Protein 1 of Bamboo Mosaic Potexvirus

Virology ◽  
2000 ◽  
Vol 277 (2) ◽  
pp. 336-344 ◽  
Author(s):  
Dann-Ying Liou ◽  
Yau-Heiu Hsu ◽  
Chiung-Hua Wung ◽  
Wen-Horng Wang ◽  
Na-Sheng Lin ◽  
...  
2018 ◽  
Vol 19 (12) ◽  
pp. 3747
Author(s):  
Matthaios Mathioudakis ◽  
Souheyla Khechmar ◽  
Carolyn Owen ◽  
Vicente Medina ◽  
Karima Ben Mansour ◽  
...  

Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamily closest to phosducin-like protein-3. In PepMV-infected and healthy Nicotiana benthamiana plants, NbTXND9 mRNA levels were comparable, and expression levels remained stable in both local and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27–35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labelling of ultrathin sections of PepMV-infected N. benthamiana leaves using α-SlTXND9 IgG revealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress.


2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Takamichi Nijo ◽  
Yukari Okano ◽  
Masayoshi Kondo ◽  
Hiroaki Okuhara ◽  
Hiroyo Sekimura ◽  
...  

ABSTRACTThe complete genome sequence ofLily virus X(LVX), which infects lilies, was determined for the first time from lilies in Japan. As with previous reports, the genome of the Japanese LVX isolate lacked an AUG start codon for the triple gene block protein 3-like region.


Virology ◽  
2008 ◽  
Vol 379 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Hsiu-Ting Hsu ◽  
Yuan-Lin Chou ◽  
Yang-Hao Tseng ◽  
Yu-Hsing Lin ◽  
Tzung-Min Lin ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0128014 ◽  
Author(s):  
JeeNa Hwang ◽  
Seonhee Lee ◽  
Joung-Ho Lee ◽  
Won-Hee Kang ◽  
Jin-Ho Kang ◽  
...  

2009 ◽  
Vol 6 (1) ◽  
pp. 50 ◽  
Author(s):  
Hsiu-Ting Hsu ◽  
Yang-Hao Tseng ◽  
Yuan-Lin Chou ◽  
Shiaw-Hwa Su ◽  
Yau-Heiu Hsu ◽  
...  

2013 ◽  
Vol 9 (6) ◽  
pp. e1003405 ◽  
Author(s):  
Yuan-Lin Chou ◽  
Yi-Jing Hung ◽  
Yang-Hao Tseng ◽  
Hsiu-Ting Hsu ◽  
Jun-Yi Yang ◽  
...  

Virology ◽  
2017 ◽  
Vol 501 ◽  
pp. 47-53 ◽  
Author(s):  
Tsai-Ling Ho ◽  
Hsiang-Chi Lee ◽  
Yuan-Lin Chou ◽  
Yang-Hao Tseng ◽  
Wei-Cheng Huang ◽  
...  

1996 ◽  
Vol 77 (5) ◽  
pp. 889-897 ◽  
Author(s):  
C. Bleykasten ◽  
D. Gilmer ◽  
H. Guilley ◽  
K. E. Richards ◽  
G. Jonard

2009 ◽  
Vol 90 (4) ◽  
pp. 1014-1024 ◽  
Author(s):  
Hiroko Senshu ◽  
Johji Ozeki ◽  
Ken Komatsu ◽  
Masayoshi Hashimoto ◽  
Kouji Hatada ◽  
...  

RNA silencing is an important defence mechanism against virus infection, and many plant viruses encode RNA silencing suppressors as a counter defence. In this study, we analysed the RNA silencing suppression ability of multiple virus species of the genus Potexvirus. Nicotiana benthamiana plants exhibiting RNA silencing of a green fluorescent protein (GFP) transgene showed reversal of GFP fluorescence when systemically infected with potexviruses. However, the degree of GFP fluorescence varied among potexviruses. Agrobacterium-mediated transient expression assay in N. benthamiana leaves demonstrated that the triple gene block protein 1 (TGBp1) encoded by these potexviruses has drastically different levels of silencing suppressor activity, and these differences were directly related to variations in the silencing suppression ability during virus infection. These results suggest that suppressor activities differ even among homologous proteins encoded by viruses of the same genus, and that TGBp1 contributes to the variation in the level of RNA silencing suppression by potexviruses. Moreover, we investigated the effect of TGBp1 encoded by Plantago asiatica mosaic virus (PlAMV), which exhibited a strong suppressor activity, on the accumulation of microRNA, virus genomic RNA and virus-derived small interfering RNAs.


Sign in / Sign up

Export Citation Format

Share Document