scholarly journals Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection

2009 ◽  
Vol 90 (4) ◽  
pp. 1014-1024 ◽  
Author(s):  
Hiroko Senshu ◽  
Johji Ozeki ◽  
Ken Komatsu ◽  
Masayoshi Hashimoto ◽  
Kouji Hatada ◽  
...  

RNA silencing is an important defence mechanism against virus infection, and many plant viruses encode RNA silencing suppressors as a counter defence. In this study, we analysed the RNA silencing suppression ability of multiple virus species of the genus Potexvirus. Nicotiana benthamiana plants exhibiting RNA silencing of a green fluorescent protein (GFP) transgene showed reversal of GFP fluorescence when systemically infected with potexviruses. However, the degree of GFP fluorescence varied among potexviruses. Agrobacterium-mediated transient expression assay in N. benthamiana leaves demonstrated that the triple gene block protein 1 (TGBp1) encoded by these potexviruses has drastically different levels of silencing suppressor activity, and these differences were directly related to variations in the silencing suppression ability during virus infection. These results suggest that suppressor activities differ even among homologous proteins encoded by viruses of the same genus, and that TGBp1 contributes to the variation in the level of RNA silencing suppression by potexviruses. Moreover, we investigated the effect of TGBp1 encoded by Plantago asiatica mosaic virus (PlAMV), which exhibited a strong suppressor activity, on the accumulation of microRNA, virus genomic RNA and virus-derived small interfering RNAs.

Virology ◽  
1999 ◽  
Vol 264 (1) ◽  
pp. 220-229 ◽  
Author(s):  
M. Erhardt ◽  
C. Stussi-Garaud ◽  
H. Guilley ◽  
K.E. Richards ◽  
G. Jonard ◽  
...  

2018 ◽  
Author(s):  
CMR Varanda ◽  
P Materatski ◽  
MD Campos ◽  
MIE Clara ◽  
G Nolasco ◽  
...  

AbstractRNA silencing is an important defense mechanism in plants, yet several plant viruses encode proteins that suppress it. Here the genome of Olive mild mosaic virus (OMMV) was screened for silencing suppressors using a green fluorescent based transient suppression assay. The full OMMV cDNA and 5 different OMMV open reading frames (ORFs) were cloned into Gateway binary destination vector pK7WG2, transformed into Agrobacterium tumefaciens C58C1 and agroinfiltrated into Nicotiana benthamiana 16C plants. Among all ORFs tested, CP and p6 showed suppressor activity, with CP showing a significant higher activity when compared to p6, yet lower than that of the full OMMV. This suggests that OMMV silencing suppression results from a complementary action of both CP and p6.Such discovery led to the use of those viral suppressors in the development of OMMV resistant plants through pathogen-derived resistance (PDR) based on RNA silencing. Two hairpin constructs targeting each suppressor were agroinfiltrated in N. benthamiana plants which were then inoculated with OMMV RNA. When silencing of both suppressors was achieved, a highly significant reduction in viral accumulation and symptom attenuation was observed as compared to that seen when each construct was used alone, and to the respective controls, thus showing clear effectiveness against OMMV infection. Data here obtained indicate that the use of both OMMV viral suppressors as transgenes is a very efficient and promising approach to obtain plants resistant to OMMV.ImportanceOMMV silencing suppressors were determined. Among all ORFs tested, CP and p6 showed suppressor activity, with CP showing a significant higher activity when compared to p6, yet lower than that of the full OMMV, suggesting a complementary action of both CP and p6 in silencing suppression.This is the first time that a silencing suppressor was found in a necrovirus and that two independent proteins act as silencing suppressors in a member of the Tombusviridae family.When silencing of both suppressors was achieved, a highly significant reduction in viral accumulation and symptom attenuation was observed as compared to that seen when each was used alone, thus showing clear effectiveness against OMMV infection. A high percentage of resistant plants was obtained (60%), indicating that the use of both OMMV viral suppressors as transgenes is a very efficient and promising approach to obtain plants resistant to OMMV.


2007 ◽  
Vol 88 (6) ◽  
pp. 1643-1655 ◽  
Author(s):  
Jeanmarie Verchot-Lubicz ◽  
Chang-Ming Ye ◽  
Devinka Bamunusinghe

Recent advances in potexvirus research have produced new models describing virus replication, cell-to-cell movement, encapsidation, R gene-mediated resistance and gene silencing. Interactions between distant RNA elements are a central theme in potexvirus replication. The 5′ non-translated region (NTR) regulates genomic and subgenomic RNA synthesis and encapsidation, as well as virus plasmodesmal transport. The 3′ NTR regulates both plus- and minus-strand RNA synthesis. How the triple gene-block proteins interact for virus movement is still elusive. As the potato virus X (PVX) TGBp1 protein gates plasmodesmata, regulates virus translation and is a suppressor of RNA silencing, further research is needed to determine how these properties contribute to propelling virus through the plasmodesmata. Specifically, TGBp1 suppressor activity is required for virus movement, but how the silencing machinery relates to plasmodesmata is not known. The TGBp2 and TGBp3 proteins are endoplasmic reticulum (ER)-associated proteins required for virus movement. TGBp2 associates with ER-derived vesicles that traffic along the actin network. Future research will determine whether the virus-induced vesicles are cytopathic structures regulating events along the ER or are vehicles carrying virus to the plasmodesmata for transfer into neighbouring cells. Efforts to assemble virions in vitro identified a single-tailed particle (STP) comprising RNA, coat protein (CP) and TGBp1. It has been proposed that TGBp1 aids in transport of virions or STP between cells and ensures translation of RNA in the receiving cells. PVX is also a tool for studying Avr–R gene interactions and gene silencing in plants. The PVX CP is the elicitor for the Rx gene. Recent reports of the PVX CP reveal how CP interacts with the Rx gene product.


2018 ◽  
Vol 19 (12) ◽  
pp. 3747
Author(s):  
Matthaios Mathioudakis ◽  
Souheyla Khechmar ◽  
Carolyn Owen ◽  
Vicente Medina ◽  
Karima Ben Mansour ◽  
...  

Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamily closest to phosducin-like protein-3. In PepMV-infected and healthy Nicotiana benthamiana plants, NbTXND9 mRNA levels were comparable, and expression levels remained stable in both local and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27–35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labelling of ultrathin sections of PepMV-infected N. benthamiana leaves using α-SlTXND9 IgG revealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress.


2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Xiaoyun Wu ◽  
Jiahui Liu ◽  
Mengzhu Chai ◽  
Jinhui Wang ◽  
Dalong Li ◽  
...  

ABSTRACTPlant viruses usually encode one or more movement proteins (MP) to accomplish their intercellular movement. A group of positive-strand RNA plant viruses requires three viral proteins (TGBp1, TGBp2, and TGBp3) that are encoded by an evolutionarily conserved genetic module of three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB). However, how these three viral movement proteins function cooperatively in viral intercellular movement is still elusive. Using a novelin vivodouble-stranded RNA (dsRNA) labeling system, we showed that the dsRNAs generated by potato virus X (PVX) RNA-dependent RNA polymerase (RdRp) are colocalized with viral RdRp, which are further tightly covered by “chain mail”-like TGBp2 aggregates and localizes alongside TGBp3 aggregates. We also discovered that TGBp2 interacts with the C-terminal domain of PVX RdRp, and this interaction is required for the localization of TGBp3 and itself to the RdRp/dsRNA bodies. Moreover, we reveal that the central and C-terminal hydrophilic domains of TGBp2 are required to interact with viral RdRp. Finally, we demonstrate that knockout of the entire TGBp2 or the domain involved in interacting with viral RdRp attenuates both PVX replication and movement. Collectively, these findings suggest that TGBp2 plays dual functional roles in PVX replication and intercellular movement.IMPORTANCEMany plant viruses contain three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB), for intercellular movement. However, how the corresponding three proteins coordinate their functions remains obscure. In the present study, we provided multiple lines of evidence supporting the notion that PVX TGBp2 functions as the molecular adaptor bridging the interaction between the RdRp/dsRNA body and TGBp3 by forming “chain mail”-like structures in the RdRp/dsRNA body, which can also enhance viral replication. Taken together, our results provide new insights into the replication and movement of PVX and possibly also other TGB-containing plant viruses.


2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Takamichi Nijo ◽  
Yukari Okano ◽  
Masayoshi Kondo ◽  
Hiroaki Okuhara ◽  
Hiroyo Sekimura ◽  
...  

ABSTRACTThe complete genome sequence ofLily virus X(LVX), which infects lilies, was determined for the first time from lilies in Japan. As with previous reports, the genome of the Japanese LVX isolate lacked an AUG start codon for the triple gene block protein 3-like region.


Virology ◽  
2000 ◽  
Vol 277 (2) ◽  
pp. 336-344 ◽  
Author(s):  
Dann-Ying Liou ◽  
Yau-Heiu Hsu ◽  
Chiung-Hua Wung ◽  
Wen-Horng Wang ◽  
Na-Sheng Lin ◽  
...  

2020 ◽  
Vol 95 (1) ◽  
Author(s):  
Li Qin ◽  
Wentao Shen ◽  
Zhongfa Tang ◽  
Weiyao Hu ◽  
Lingna Shangguan ◽  
...  

ABSTRACT Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability. IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.


2015 ◽  
Vol 105 (3) ◽  
pp. 399-408 ◽  
Author(s):  
D. E. V. Villamor ◽  
J. Susaimuthu ◽  
K. C. Eastwell

It is demonstrated that closely related viruses within the family Betaflexiviridae are associated with a number of diseases that affect sweet cherry (Prunus avium) and other Prunus spp. Cherry rusty mottle-associated virus (CRMaV) is correlated with the appearance of cherry rusty mottle disease (CRMD), and Cherry twisted leaf-associated virus (CTLaV) is linked to cherry twisted leaf disease (CTLD) and apricot ringpox disease (ARPD). Comprehensive analysis of previously reported full genomic sequences plus those determined in this study representing isolates of CTLaV, CRMaV, Cherry green ring mottle virus, and Cherry necrotic rusty mottle virus revealed segregation of sequences into four clades corresponding to distinct virus species. High-throughput sequencing of RNA from representative source trees for CRMD, CTLD, and ARPD did not reveal additional unique virus sequences that might be associated with these diseases, thereby further substantiating the association of CRMaV and CTLaV with CRMD and CTLD or ARPD, respectively. Based on comparison of the nucleotide and amino acid sequence identity values, phylogenetic relationships with other triple-gene block-coding viruses within the family Betaflexiviridae, genome organization, and natural host range, a new genus (Robigovirus) is suggested.


Sign in / Sign up

Export Citation Format

Share Document