scholarly journals Translational Activation of Encapsidated Potato Virus X RNA by Coat Protein Phosphorylation

Virology ◽  
2001 ◽  
Vol 286 (2) ◽  
pp. 466-474 ◽  
Author(s):  
J.G. Atabekov ◽  
N.P. Rodionova ◽  
O.V. Karpova ◽  
S.V. Kozlovsky ◽  
V.K. Novikov ◽  
...  
2021 ◽  
Vol 83 (5) ◽  
pp. 76-81
Author(s):  
L.O. Maksymenko ◽  
◽  
N.Y. Parkhomenko ◽  

At the present stage of development of plant virology the study of molecular mechanisms of regulation, translation and replication of viral RNA is of great interest. Potato virus X (PVX) RNA in viral particles is not available for in vitro translation, but acquires the ability to be translated as a result of shell protein phosphorylation. The aim of our study was to investigate the conditions of phosphorylation of the PVX coat protein in in vitro and in vivo systems, as well as the effect of EDTA and CaCl2 on the phosphorylation in vitro. Methods. The PVX coat protein was obtained by the guanidine chloride method. The kinase activity of PVX protein in vitro was determined in a standard reaction mixture containing Mn2+ ions, 0.8 mM EDTA, and 2 micro Ci 32P ATP (3000 Ci/mM). Phosphorylation of the protein in vivo was carried out by immersing Datura stramonium leaves with symptoms of PVX infection in water containing К3PO4 32P. After isolation of PVX from the leaves, the viral coat protein was fractionated by SDS-PAAG electrophoresis. Fractions of the protein were transferred from the gel by contact manner on a nitrocellulose filter. The PVX coat protein was detected by immunoblotting using immunoglobulins to PVX coat protein and rabbit antibodies labeled with peroxidase. The inclusion of labeled phosphorus in the PVX protein was detected by radioautography. Results. The PVX coat protein was phosphorylated in vitro in a standard incubation medium containing (gamma -32P) ATP. In contrast, the PVX coat protein cannot be phosphorylated in the same conditions in the presence of (alpha-32P) ATP. In vivo phosphorylated PVX coat protein was detected by exposing nitrocellulose filter with immunoblot on X-ray film. Additionally, it was found that the presence of 10 mm EDTA and 10 mm CaCl2 inhibited the process of the PVX coat protein phosphorylation in vitro. Conclusions. The coat protein of potato virus X is able to phosphorylate in vitro and in vivo systems. The terminal ATP phosphate plays a major role in the phosphorylation of the PVX coat protein. The presence of EDTA and Ca2+ influences on the process of protein phosphorylation in vitro. These agents are able to inhibit the process of phosphorylation of the PVX coat protein. Thus, the phenomenon of phosphorylation of the PVX coat protein apparently indicates about its participation in the regulation of the virus reproduction in the infected cell.


Acta Naturae ◽  
2011 ◽  
Vol 3 (3) ◽  
pp. 40-46 ◽  
Author(s):  
M V Arkhipenko ◽  
E K Petrova ◽  
N A Nikitin ◽  
A D Protopopova ◽  
E V Dubrovin ◽  
...  

2007 ◽  
Vol 41 (4) ◽  
pp. 630-637 ◽  
Author(s):  
M. A. Nemykh ◽  
V. K. Novikov ◽  
A. M. Arutyunyan ◽  
P. V. Kalmykov ◽  
V. A. Drachev ◽  
...  

1991 ◽  
Vol 32 (2-3) ◽  
pp. 317-326 ◽  
Author(s):  
E.N. Dobrov ◽  
A.F. Bobkova ◽  
M.I. Goldstein ◽  
E.K. Timofeeva ◽  
J.G. Atabekov

2007 ◽  
Vol 41 (4) ◽  
pp. 638-641 ◽  
Author(s):  
E. N. Dobrov ◽  
M. A. Nemykh ◽  
E. V. Lukashina ◽  
L. A. Baratova ◽  
V. A. Drachev ◽  
...  

2002 ◽  
Vol 83 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Ewan W. Blanch ◽  
David J. Robinson ◽  
Lutz Hecht ◽  
Christopher D. Syme ◽  
Kurt Nielsen ◽  
...  

Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar to that of tobacco mosaic virus (TMV) studied previously, being dominated by signals characteristic of proteins with helix bundle folds. In particular, PVX and NMV show strong positive ROA bands at ∼1340 cm−1 assigned to hydrated α-helix and perhaps originating in surface exposed helical residues, together with less strong positive ROA intensity in the range ∼1297–1312 cm−1 assigned to α-helix in a more hydrophobic environment and perhaps originating in residues at helix–helix interfaces. The positive ∼1340 cm−1 ROA band of TMV is less intense than those of PVX and NMV, suggesting that TMV contains less hydrated α-helix. Small differences in other spectral regions reflect differences in some loop, turn and side-chain compositions and conformations among the three viruses. A pattern recognition program based on principal component analysis of ROA spectra indicates that the coat protein subunit folds of PVX and NMV may be very similar to each other and similar to that of TMV. These results suggest that PVX and NMV may have coat protein subunit structures based on folds similar to the TMV helix bundle and hence that the helical architecture of the PVX and NMV particles may be similar to that of TMV but with different structural parameters.


Sign in / Sign up

Export Citation Format

Share Document