scholarly journals Reexamination of Amphotropic Murine Leukemia Virus Neurovirulence: Neural Stem Cell-Mediated Microglial Infection Fails to Induce Acute Neurodegeneration

Virology ◽  
2002 ◽  
Vol 293 (2) ◽  
pp. 262-272 ◽  
Author(s):  
Russell S. Traister ◽  
William P. Lynch
2005 ◽  
Vol 79 (16) ◽  
pp. 10776-10787 ◽  
Author(s):  
Christiane Beer ◽  
Ditte S. Andersen ◽  
Aleksandra Rojek ◽  
Lene Pedersen

ABSTRACT Early results suggested that the amphotropic murine leukemia virus (A-MLV) does not enter cells via endocytosis through clathrin-coated pits and this gammaretrovirus has therefore been anticipated to fuse directly with the plasma membrane. However, here we present data implicating a caveola-mediated endocytic entry route for A-MLV via its receptor Pit2. Caveolae belong to the cholesterol-rich microdomains characterized by resistance to nonionic detergents such as Triton X-100. Extraction of murine fibroblastic NIH 3T3 cells in cold Triton X-100 showed the presence of the A-MLV receptor Pit2 in detergent-insoluble microdomains. Using coimmunoprecipitation of cell extracts, we were able to demonstrate direct association of Pit2 with caveolin-1, the structural protein of caveolae. Other investigations revealed that A-MLV infection in contrast to vesicular stomatitis virus infection is a slow process (t ≈5 h), which is dependent on plasma membrane cholesterol but independent of NH4Cl treatment of cells; NH4Cl impairs entry via clathrin-coated pits. Furthermore, expression of dominant-negative caveolin-1 decreased the susceptibility to infection via Pit2 by approximately 70%. These results show that A-MLV can enter cells via a caveola-dependent entry route. Moreover, increase in A-MLV infection by treatment with okadaic acid as well as entry of fusion-defective fluorescent A-MLV virions in NIH 3T3 cells further confirmed our findings and show that A-MLV can enter mouse fibroblasts via an endocytic entry route involving caveolae. Finally, we also found colocalization of fusion-defective fluorescent A-MLV virions with caveolin-1 in NIH 3T3 cells. This is the first time substantial evidence has been presented implicating the existence of a caveola-dependent endocytic entry pathway for a retrovirus.


2014 ◽  
Vol 89 (3) ◽  
pp. 1851-1866 ◽  
Author(s):  
Izabela Rasmussen ◽  
Frederik Vilhardt

ABSTRACTThe entry mechanism of murine amphotropic retrovirus (A-MLV) has not been unambiguously determined. We show here that A-MLV is internalized not by caveolae or other pinocytic mechanisms but by macropinocytosis. Thus, A-MLV infection of mouse embryonic fibroblasts deficient for caveolin or dynamin, and NIH 3T3 cells knocked down for caveolin expression, was unaffected. Conversely, A-MLV infection of NIH 3T3 and HeLa cells was sensitive to amiloride analogues and actin-depolymerizing drugs that interfere with macropinocytosis. Further manipulation of the actin cytoskeleton through conditional expression of dominant positive or negative mutants of Rac1, PAK1, and RhoG, to increase or decrease macropinocytosis, similarly correlated with an augmented or inhibited infection with A-MLV, respectively. The same experimental perturbations affected the infection of viruses that use clathrin-coated-pit endocytosis or other pathways for entry only mildly or not at all. These data agree with immunofluorescence studies and cryo-immunogold labeling for electron microscopy, which demonstrate the presence of A-MLV in protrusion-rich areas of the cell surface and in cortical fluid phase (dextran)-filled macropinosomes, which also account for up to a half of the cellular uptake of the cell surface-binding lectin concanavalin A. We conclude that A-MLV use macropinocytosis as the predominant entry portal into cells.IMPORTANCEBinding and entry of virus particles into mammalian cells are the first steps of infection. Understanding how pathogens and toxins exploit or divert endocytosis pathways has advanced our understanding of membrane trafficking pathways, which benefits development of new therapeutic schemes and methods of drug delivery. We show here that amphotropic murine leukemia virus (A-MLV) pseudotyped with the amphotropic envelope protein (which expands the host range to many mammalian cells) gains entry into host cells by macropinocytosis. Macropinosomes form as large, fluid-filled vacuoles (up to 10 μm) following the collapse of cell surface protrusions and membrane scission. We used drugs or the introduction of mutant proteins that affect the actin cytoskeleton and cell surface dynamics to show that macropinocytosis and A-MLV infection are correlated, and we provide both light- and electron-microscopic evidence to show the localization of A-MLV in macropinosomes. Finally, we specifically exclude some other potential entry portals, including caveolae, previously suggested to internalize A-MLV.


1990 ◽  
Vol 10 (8) ◽  
pp. 4045-4057 ◽  
Author(s):  
T P Loh ◽  
L L Sievert ◽  
R W Scott

A negative regulatory element (NRE) spanning the tRNA primer-binding site (PBS) of Moloney murine leukemia virus (M-MuLV) mediates repression of M-MuLV expression specifically in embryonal carcinoma (EC) cells. We precisely defined the element by base-pair mutagenesis to an 18-base-pair segment of the tRNA PBS and showed that the element also restricted expression when moved upstream of the long terminal repeat. A DNA-binding activity specific for the M-MuLV NRE was detected in vitro by using crude EC nuclear extracts in exonuclease III protection assays. Binding was strongly correlated with repression in EC cells. Mutations within the NRE that relieved repression disrupted binding activity. Also, nuclear extracts prepared from permissive, differentiated EC cell cultures showed reduced binding activity for the NRE. These results indicate the presence of a stem cell-specific repressor that extinguishes M-MuLV expression via the NRE at the tRNA PBS.


Sign in / Sign up

Export Citation Format

Share Document