Nuclear Import and Export in Plants and Animals

Author(s):  
Tzvi Tzfira ◽  
Vitaly Citovsky
2013 ◽  
Vol 288 (8) ◽  
pp. 5506-5517 ◽  
Author(s):  
Ángel Juan García-Yagüe ◽  
Patricia Rada ◽  
Ana I. Rojo ◽  
Isabel Lastres-Becker ◽  
Antonio Cuadrado

2005 ◽  
Vol 16 (7) ◽  
pp. 3200-3210 ◽  
Author(s):  
Jennifer L. Hodges ◽  
Jennifer H. Leslie ◽  
Nima Mosammaparast ◽  
Yurong Guo ◽  
Jeffrey Shabanowitz ◽  
...  

Nuclear import and export is mediated by an evolutionarily conserved family of soluble transport factors, the karyopherins (referred to as importins and exportins). The yeast karyopherin Kap114p has previously been shown to import histones H2A and H2B, Nap1p, and a component of the preinitiation complex (PIC), TBP. Using a proteomic approach, we have identified several potentially new cargoes for Kap114p. These cargoes include another PIC component, the general transcription factor IIB or Sua7p, which interacted directly with Kap114p. Consistent with its role as a Sua7p import factor, deletion of KAP114 led to specific mislocalization of Sua7p to the cytoplasm. An interaction between Sua7p and TBP was also detected in cytosol, raising the possibility that both Sua7p and TBP can be coimported by Kap114p. We have also shown that Kap114p possesses multiple overlapping binding sites for its partners, Sua7p, Nap1p, and H2A and H2B, as well as RanGTP and nucleoporins. In addition, we have assembled an in vitro complex containing Sua7p, Nap1p, and histones H2A and H2B, suggesting that this Kap may import several proteins simultaneously. The import of more than one cargo at a time would increase the efficiency of each import cycle and may allow the regulation of coimported cargoes.


Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 2107-2117 ◽  
Author(s):  
Nicholas S. Tolwinski ◽  
Eric Wieschaus

Drosophila melanogaster Armadillo plays two distinct roles during development. It is a component of adherens junctions, and functions as a transcriptional activator in response to Wingless signaling. In the current model, Wingless signal causes stabilization of cytoplasmic Armadillo allowing it to enter the nucleus where it can activate transcription. However, the mechanism of nuclear import and export remains to be elucidated. In this study, we show that two gain-of-function alleles of Armadillo activate Wingless signaling by different mechanisms. The S10 allele was previously found to localize to the nucleus, where it activates transcription. In contrast, the ΔArm allele localizes to the plasma membrane, and forces endogenous Arm into the nucleus. Therefore, ΔArm is dependent on the presence of a functional endogenous allele of arm to activate transcription. We show that ΔArm may function by titrating Axin protein to the membrane, suggesting that it acts as a cytoplasmic anchor keeping Arm out of the nucleus. In axin mutants, Arm is localized to the nuclei. We find that nuclear retention is dependent on dTCF/Pangolin. This suggests that cellular distribution of Arm is controlled by an anchoring system, where various nuclear and cytoplasmic binding partners determine its localization.


2020 ◽  
Author(s):  
Tae Yeon Yoo ◽  
Timothy J Mitchison

AbstractMacromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG repeats in NPC are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear. We developed high-throughput assays based on optogenetic probes to quantify the kinetics of nuclear import and export in living human cells. We found that increasing O-GlcNAc modification of the NPC accelerated NTR-facilitated nucleocytoplasmic transport of proteins in both directions, and decreasing modification slowed transport. Super-resolution imaging revealed strong enrichment of O-GlcNAc at the FG-repeat barrier. O-GlcNAc modification also accelerated passive permeation of a small, inert protein through NPCs. We conclude that O-GlcNAc modification accelerates nucleocytoplasmic transport by enhancing the non-specific permeability the FG-repeat barrier, perhaps by steric inhibition of interactions between FG repeats.SummaryNuclear pore complexes mediate nuclear transport and are highly modified with O-linked N-acetylglucosamine (O-GlcNAc) on FG repeat domains. Using a new quantitative live-cell imaging assay, Yoo and Mitchison demonstrate acceleration of nuclear import and export by O-GlcNAc modification.


Author(s):  
Jibo Zhang ◽  
Vincent R. Roggero ◽  
Lizabeth A. Allison

2006 ◽  
Vol 7 (2) ◽  
pp. 131-146 ◽  
Author(s):  
ALEXANDER KRICHEVSKY ◽  
STANISLAV V. KOZLOVSKY ◽  
YEDIDYA GAFNI ◽  
VITALY CITOVSKY

Virology ◽  
1998 ◽  
Vol 246 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Gary R. Whittaker ◽  
Ari Helenius

2009 ◽  
Vol 284 (14) ◽  
pp. 9382-9393 ◽  
Author(s):  
Joerg Kahle ◽  
Elisa Piaia ◽  
Sonja Neimanis ◽  
Michael Meisterernst ◽  
Detlef Doenecke

2002 ◽  
Vol 293 (4) ◽  
pp. 1242-1247 ◽  
Author(s):  
Tomiyasu Murata ◽  
Yumi Yoshino ◽  
Noriyoshi Morita ◽  
Norio Kaneda

Sign in / Sign up

Export Citation Format

Share Document