Combined Modeling and Extracellular Recording Studies of UP and Down Transitions of Neurons in Awake or Behaving Monkeys

2005 ◽  
pp. 555-561
Author(s):  
Hiroshi Okamoto ◽  
Yoshikazu Isomura ◽  
Masahiko Takada ◽  
Tomoki Fukai
2013 ◽  
Vol 109 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Guoji Wu ◽  
Steve I. Perlmutter

GABAergic and glycinergic inhibition play key roles in the function of spinal motor pathways. However, there is little direct information on the extent to which inhibition controls the activity of spinal neurons during behavior or the relative effectiveness of GABA and glycine on cell activity under normal conditions. These issues were investigated in three macaque monkeys trained to perform voluntary ramp-and-hold wrist movements and grip. Pipettes with an extracellular recording electrode and iontophoresis barrels were used to eject GABA, glycine, and/or their respective antagonists, bicuculline and strychnine, as the activity of single neurons was recorded in the C6–T1 spinal segments during hand movements. The firing rate of the vast majority of neurons decreased when an inhibitory neurotransmitter was ejected from the electrode, suggesting that most movement-related spinal neurons are sensitive to both GABA and glycine. Most movement-related neurons exhibited increased activity during iontophoresis of an antagonist, suggesting that both GABAergic and glycinergic inhibition actively regulate the majority of spinal neurons during movement. These conclusions were supported by the responses of neurons tested with both agonists or both antagonists. Bicuculline and strychnine produced the largest increases in firing rate during dynamic movements (ramp phase), smaller increases during maintained torque/force (hold phase), and the smallest increase during the rest period. Since excitatory inputs also tend to increase progressively from rest to static to dynamic muscle contractions, this result is consistent with coupled excitatory and inhibitory inputs to spinal neurons during movement.


1983 ◽  
Vol 10 (6) ◽  
pp. 853-857 ◽  
Author(s):  
Stephen R. Kelso ◽  
Douglas O. Nelson ◽  
Nancy L. Silva ◽  
Jack A. Boulant

2014 ◽  
Vol 112 (2) ◽  
pp. 467-479 ◽  
Author(s):  
Adriana Galvan ◽  
Xing Hu ◽  
Karen S. Rommelfanger ◽  
Jean-Francois Pare ◽  
Zafar U. Khan ◽  
...  

The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors.


2015 ◽  
Vol 240 ◽  
pp. 154-160 ◽  
Author(s):  
Satoko Amemori ◽  
Ken-ichi Amemori ◽  
Margaret L. Cantor ◽  
Ann M. Graybiel

1998 ◽  
Vol 80 (6) ◽  
pp. 3100-3111 ◽  
Author(s):  
Y. Dalezios ◽  
C. A. Scudder ◽  
S. M. Highstein ◽  
A. K. Moschovakis

Dalezios, Y., C. A. Scudder, S. M. Highstein, and A. K. Moschovakis. Anatomy and physiology of the primate interstitial nucleus of Cajal. II. Discharge pattern of single efferent fibers. J. Neurophysiol. 80: 3100–3111, 1998. Single efferent fibers of the interstitial nucleus of Cajal (NIC) were characterized physiologically and injected with biocytin in alert behaving monkeys. Quantitative analysis demonstrated that their discharge encodes a constellation of oculomotor variables. Tonic and phasic signals were related to vertical (up or down) eye position and saccades, respectively. Depending on how they encoded eye position, saccade velocity, saccade size, saccade duration, and smooth-pursuit eye velocity, fibers were characterized as regular or irregular, bi- or unidirectionally modulated, more or less sensitive, and reliable or unreliable. Further, fibers that did not burst for saccades (tonic) and fibers the eye-position and saccade-related signals of which increased in the same (in-phase) or in the opposite (anti-phase) directions were encountered. A continuum of discharge properties was the rule. We conclude that NIC efferent fibers send a combination of eye-position, saccade-, and smooth-pursuit-related signals, mixed in proportions that differ for different fibers, to targets of the vertical neural integrator such as extraocular motoneurons.


2010 ◽  
Vol 103 (1) ◽  
pp. 519-530 ◽  
Author(s):  
Seiji Ono ◽  
Lukas Brostek ◽  
Ulrich Nuding ◽  
Stefan Glasauer ◽  
Ulrich Büttner ◽  
...  

Several regions of the brain are involved in smooth-pursuit eye movement (SPEM) control, including the cortical areas MST (medial superior temporal) and FEF (frontal eye field). It has been shown that the eye-movement responses to a brief perturbation of the visual target during ongoing pursuit increases with higher pursuit velocities. To further investigate the underlying neuronal mechanism of this nonlinear dynamic gain control and the contributions of different cortical areas to it, we recorded from MSTd (dorsal division of the MST area) neurons in behaving monkeys ( Macaca mulatta) during step-ramp SPEM (5–20°/s) with and without superimposed target perturbation (one cycle, 5 Hz, ±10°/s). Smooth-pursuit–related MSTd neurons started to increase their activity on average 127 ms after eye-movement onset. Target perturbation consistently led to larger eye-movement responses and decreasing latencies with increasing ramp velocities, as predicted by dynamic gain control. For 36% of the smooth-pursuit–related MSTd neurons the eye-movement perturbation was accompanied by detectable changes in neuronal activity with a latency of 102 ms, with respect to the eye-movement response. The remaining smooth-pursuit–related MSTd neurons (64%) did not reflect the eye-movement perturbation. For the large majority of cases this finding could be predicted by the dynamic properties of the step-ramp responses. Almost all these MSTd neurons had large visual receptive fields responding to motion in preferred directions opposite to the optimal SPEM stimulus. Based on these findings it is unlikely that MSTd plays a major role for dynamic gain control and initiation of the perturbation response. However, neurons in MSTd could still participate in SPEM maintenance. Due to their visual field properties they could also play a role in other functions such as self-motion perception.


1988 ◽  
Vol 59 (2) ◽  
pp. 636-647 ◽  
Author(s):  
Y. Kang ◽  
K. Endo ◽  
T. Araki

1. By spike-triggered averaging, we documented recurrent individual excitatory postsynaptic potentials (EPSPs) produced in 33 pyramidal tract (PT) cells (target) by the activity of axon collaterals of neighboring single PT cells (reference) in the motor cortex of the cat. 2. The computer was triggered by the spontaneous activity of reference PT cells or by current pulses applied to reference PT cells through the extracellular recording electrode. 3. The threshold for direct activation of PT cells was less than 0.1 microA with an anodal current pulse and 0.2-0.3 microA with a cathodal current pulse. 4. Application of an anodal current pulse directly activated only a single reference PT cell, the surface membrane of which was presumably touched by and sucked with the extracellular recording electrode. 5. When a cathodal current pulse was used, simultaneous activation of neurons or axons other than the reference PT cell was checked by changing the stimulus parameters along the characteristic strength-duration curve for the reference PT cell and/or by comparing averaged EPSPs obtained by cathodal stimulation with those obtained from spontaneous spikes of the reference PT cell. 6. Recurrent individual EPSPs were produced in fast PT cells by activation of neighboring slow PT cells and also of neighboring fast PT cells. Some recurrent individual EPSPs were also observed in slow PT cells. 7. The mean latencies of recurrent individual EPSPs produced by the spontaneous activity of reference slow and fast PT cells were 1.61 (n = 12) and 1.12 ms (n = 8), respectively. Their amplitudes ranged between 30 and 390 microV (n = 33). The rise time observed in fast PT cells with activation of slow and fast PT cells ranged from 1.6 to 3.6 ms (n = 20) and from 0.8 to 1.9 ms (n = 10), respectively. 8. The average conduction velocity of axon collaterals of slow and fast PT cells was estimated to be as slow as that of unmyelinated fibers in the cat. 9. It is suggested that axon collaterals of slow PT cells synapse onto more distal dendrites of fast PT cells than axon collaterals of fast PT cells.


2005 ◽  
Vol 94 (2) ◽  
pp. 1541-1553 ◽  
Author(s):  
Jenny C. A. Read ◽  
Bruce G. Cumming

The temporal properties of disparity-sensitive neurons place important temporal constraints on stereo matching. We examined these constraints by measuring the responses of disparity-selective neurons in striate cortex of awake behaving monkeys to random-dot stereograms that contained interocular delays. Disparity selectivity was gradually abolished by increasing interocular delay (when the delay exceeds the integration time, the inputs from the 2 eyes become uncorrelated). The amplitude of the disparity-selective response was a Gaussian function of interocular delay, with a mean of 16 ms (±5 ms, SD). Psychophysical measures of stereoacuity, in both monkey and human observers, showed a closely similar dependency on time, suggesting that temporal integration in V1 neurons is what determines psychophysical matching constraints over time. There was a slight but consistent asymmetry in the neuronal responses, as if the optimum stimulus is one in which the right stimulus leads by about 4 ms. Because all recordings were made in the left hemisphere, this probably reflects nasotemporal differences in conduction times; psychophysical data are compatible with this interpretation. In only a few neurons (5/72), interocular delay caused a change in the preferred disparity. Such tilted disparity/delay profiles have been invoked previously to explain depth perception in the stroboscopic version of the Pulfrich effect (and other variants). However, the great majority of the neurons did not show tilted disparity/delay profiles. This suggests that either the activity of these neurons is ignored when viewing Pulfrich stimuli, or that current theories relating neuronal properties to perception in the Pulfrich effect need to be reevaluated.


Sign in / Sign up

Export Citation Format

Share Document