Game Problems for Systems with Fractional Derivatives of Arbitrary Order

Author(s):  
Arkadii A. Chikrii
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 755
Author(s):  
Yuri Luchko

In this paper, we introduce the general fractional integrals and derivatives of arbitrary order and study some of their basic properties and particular cases. First, a suitable generalization of the Sonine condition is presented, and some important classes of the kernels that satisfy this condition are introduced. Whereas the kernels of the general fractional derivatives of arbitrary order possess integrable singularities at the point zero, the kernels of the general fractional integrals can—depending on their order—be both singular and continuous at the origin. For the general fractional integrals and derivatives of arbitrary order with the kernels introduced in this paper, two fundamental theorems of fractional calculus are formulated and proved.


Author(s):  
Khaula Khan ◽  
Wilson Lamb ◽  
Adam McBride

AbstractTwo approaches for defining fractional derivatives of periodic distributions are presented. The first is a distributional version of the Weyl fractional derivative in which a derivative of arbitrary order of a periodic distribution is defined via Fourier series. The second is based on the Grünwald-Letnikov formula for defining a fractional derivative as a limit of a fractional difference quotient. The equivalence of the two approaches is established and an application to a fractional diffusion equation, posed in a space of periodic distributions, is also discussed.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 475
Author(s):  
Ewa Piotrowska ◽  
Krzysztof Rogowski

The paper is devoted to the theoretical and experimental analysis of an electric circuit consisting of two elements that are described by fractional derivatives of different orders. These elements are designed and performed as RC ladders with properly selected values of resistances and capacitances. Different orders of differentiation lead to the state-space system model, in which each state variable has a different order of fractional derivative. Solutions for such models are presented for three cases of derivative operators: Classical (first-order differentiation), Caputo definition, and Conformable Fractional Derivative (CFD). Using theoretical models, the step responses of the fractional electrical circuit were computed and compared with the measurements of a real electrical system.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Vasily E. Tarasov

Fractional diffusion equations for three-dimensional lattice models based on fractional-order differences of the Grünwald-Letnikov type are suggested. These lattice fractional diffusion equations contain difference operators that describe long-range jumps from one lattice site to another. In continuum limit, the suggested lattice diffusion equations with noninteger order differences give the diffusion equations with the Grünwald-Letnikov fractional derivatives for continuum. We propose a consistent derivation of the fractional diffusion equation with the fractional derivatives of Grünwald-Letnikov type. The suggested lattice diffusion equations can be considered as a new microstructural basis of space-fractional diffusion in nonlocal media.


Sign in / Sign up

Export Citation Format

Share Document