Computational Neuroscience for Cognitive Brain Functions

Author(s):  
Marco Loh ◽  
Miruna Szabo ◽  
Rita Almeida ◽  
Martin Stetter ◽  
Gustavo Deco
2016 ◽  
Vol 9 (2) ◽  
pp. 293-300
Author(s):  
Bodo Herzog

AbstractThis article is a review of the book ‘Brain Computation As Hierarchical Abstraction’ by Dana H. Ballard published by MIT press in 2015. The book series computational neuroscience familiarizes the reader with the computational aspects of brain functions based on neuroscientific evidence. It provides an excellent introduction of the functioning, i.e. the structure, the network and the routines of the brain in our daily life. The final chapters even discuss behavioral elements such as decision-making, emotions and consciousness. These topics are of high relevance in other sciences such as economics and philosophy. Overall, Ballard’s book stimulates a scientifically well-founded debate and, more importantly, reveals the need of an interdisciplinary dialogue towards social sciences.


Author(s):  
Marco Loh ◽  
Miruna Szabo ◽  
Rita Almeida ◽  
Martin Stetter ◽  
Gustavo Deco

2016 ◽  
Vol 12 (3) ◽  
Author(s):  
Piotr Prokopowicz ◽  
Dariusz Mikołajewski

AbstractResearch on the computational models of the brain constitutes an important part of the current challenges within computational neuroscience. The current results are not satisfying. Despite the continuous efforts of scientists and clinicians, it is hard to fully explain all the mechanisms of a brain function. Computational models of the brain based on fuzzy logic, including ordered fuzzy numbers, may constitute another breakthrough in the aforementioned area, offering a completing position to the current state of the art. The aim of this paper is to assess the extent to which possible opportunities concerning computational brain models based on fuzzy logic techniques may be exploited both in the area of theoretical and experimental computational neuroscience and in clinical applications, including our own concept. The proposed approach can open a family of novel methods for a more effective and (neuro)biologically reliable brain simulation based on fuzzy logic techniques useful in both basic sciences and applied sciences.


2021 ◽  
Author(s):  
Bernard Marius 't Hart ◽  
Titipat Achakulvisut ◽  
Gunnar Blohm ◽  
Konrad Kording ◽  
Megan A. K. Peters ◽  
...  

Neuromatch Academy (https://neuromatch.io/academy) was designed as an online summer school to cover the basics of computational neuroscience in three weeks. The materials cover dominant and emerging computational neuroscience tools, how they complement one another, and specifically focus on how they can help us to better understand how the brain functions. An original component of the materials is its focus on modeling choices, i.e. how do we choose the right approach, how do we build models, and how can we evaluate models to determine if they provide real (meaningful) insight. This meta-modeling component of the instructional materials asks what questions can be answered by different techniques, and how to apply them meaningfully to get insight about brain function.


1970 ◽  
Vol 6 (1) ◽  
Author(s):  
Muskinul Fuad

The education system in Indonesia emphasize on academic intelligence, whichincludes only two or three aspects, more than on the other aspects of intelligence. For thatreason, many children who are not good at academic intelligence, but have good potentials inother aspects of intelligence, do not develop optimally. They are often considered and labeledas "stupid children" by the existing system. This phenomenon is on the contrary to the theoryof multiple intelligences proposed by Howard Gardner, who argues that intelligence is theability to solve various problems in life and produce products or services that are useful invarious aspects of life.Human intelligence is a combination of various general and specific abilities. Thistheory is different from the concept of IQ (intelligence quotient) that involves only languageskills, mathematical, and spatial logics. According to Gardner, there are nine aspects ofintelligence and its potential indicators to be developed by each child born without a braindefect. What Gardner suggested can be considered as a starting point to a perspective thatevery child has a unique individual intelligence. Parents have to treat and educate theirchildren proportionally and equitably. This treatment will lead to a pattern of education that isfriendly to the brain and to the plurality of children’s potential.More than the above points, the notion that multiple intelligences do not just comefrom the brain needs to be followed. Humans actually have different immaterial (spiritual)aspects that do not refer to brain functions. The belief in spiritual aspects and its potentialsmeans that human beings have various capacities and they differ from physical capacities.This is what needs to be addressed from the perspective of education today. The philosophyand perspective on education of the educators, education stakeholders, and especially parents,are the first major issue to be addressed. With this step, every educational activity andcommunication within the family is expected to develop every aspect of children'sintelligence, especially the spiritual intelligence.


Sign in / Sign up

Export Citation Format

Share Document