Surface modifications to influence adhesion of biological cells and adsorption of globular proteins

Author(s):  
W. Norde
Author(s):  
J. L. Farrant ◽  
J. D. McLean

For electron microscope techniques such as ferritin-labeled antibody staining it would be advantageous to have available a simple means of thin sectioning biological material without subjecting it to lipid solvents, impregnation with plastic monomers and their subsequent polymerization. With this aim in view we have re-examined the use of protein as an embedding medium. Gelatin which has been used in the past is not very satisfactory both because of its fibrous nature and the high temperature necessary to keep its solutions fluid. We have found that globular proteins such as the serum and egg albumins can be cross-linked so as to yield blocks which are suitable for ultrathin sectioning.


Author(s):  
George Price ◽  
Lizardo Cerezo

Ultrastructural defects of ciliary structure have been known to cause recurrent sino-respiratory infection concurrent with Kartagener's syndrome. (1,2,3) These defects are also known to cause infertility in both males and females. (4) Overall, the defects are defined as the Immotile, or Dyskinetic Cilia Syndrome (DCS). Several ultrastructural findings have been described, including decreased number of cilia, multidirection orientation, fused and compound cilia, membrane blebs, excess matrix in the axoneme, missing outer tubular doublets, translocated doublets, defective radial spokes and dynein arms. A rare but noteworthy ultrastructural finding in DCS is the predominance of microvilli-like structures on the luminal surface of the respiratory epithelium. (5,6) These permanent surface modifications of the apical respiratory epithelium no longer resemble cilia but reflect the ultrastructure of stereocilia, similar to that found in the epidydimal epithelium. Like microvilli, stereocilia are devoid of microtubular ultrastructure in comparison with true cilia.


1991 ◽  
Vol 223 ◽  
Author(s):  
Neeta Agrawal ◽  
R. D. Tarey ◽  
K. L. Chopra

ABSTRACTArgon plasma exposure has been used to induce surface chemical modification of aluminium thin films, causing a drastic change in etch rate in standard HNO3/CH3COOH/H3PO4 etchant. The inhibition period was found to increase with power and Ar plasma exposure time. Auger electron and x-ray photoelectron spectroscopies have indicated formation of an aluminium fluoride (AlF3) surface layer due to fluorine contamination originating from the residue left in the plasma chamber during CF4 processing. The high etch selectivity between unexposed and argon plasma exposed regions has been exploited as a new technique for resistless patterning of aluminium.


PIERS Online ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 251-255 ◽  
Author(s):  
Hsin-Hung Li ◽  
Jen-Yu Jao ◽  
Ming-Kun Chen ◽  
Ling-Sheng Jang ◽  
Yi-Chu Hsu

Sign in / Sign up

Export Citation Format

Share Document