Shear Failure of Ti-6Al-4V by Direct Impact and Analyse of the Process of Elastic and Plastic Wave Propagation

Author(s):  
P. Chwalik ◽  
A. Rusinek ◽  
J. R. Klepaczko
1978 ◽  
Vol 29 (1-4) ◽  
pp. 75-92 ◽  
Author(s):  
D. W. Nicholson ◽  
A. Phillips

2016 ◽  
Vol 715 ◽  
pp. 180-185 ◽  
Author(s):  
Masniezam Ahmad ◽  
Khairul Azwan Ismail ◽  
Fauziah Mat ◽  
William James Stronge

This study proposes an improved viscoplastic impact model that calculates impact response for direct impact between two compact bodies. The proposed model employs spring and viscous elements that represent the energy loss due to plastic deformation and stress wave propagation, respectively. The impact response is calculated by solving differential equations through analytical and numerical methods. This model can accurately predict impact response for low, moderate and high impact speeds.


2015 ◽  
Vol 94 ◽  
pp. 04047
Author(s):  
Kenichi Tanigaki ◽  
Toru Idouji ◽  
Keitaro Horikawa ◽  
Hidetoshi Kobayashi ◽  
Kinya Ogawa

1968 ◽  
Vol 35 (4) ◽  
pp. 782-786 ◽  
Author(s):  
R. J. Clifton

Assuming a one-dimensional rate independent theory of combined longitudinal and torsional plastic wave propagation in a thin-walled tube, restrictions are obtained on the possible speeds of elastic-plastic boundaries. These restrictions are shown to depend on the type of discontinuity at the boundary and on whether loading or unloading is occurring. The range of unloading (loading) wave speeds for the case when the nth time derivative of the solution is the first derivative that is discontinuous across the boundary is the complement of the range of unloading (loading) wave speeds for the case when the first discontinuity is in the (n + 1)th time derivative. Thus all speeds are possible for elastic-plastic boundaries corresponding to either loading or unloading. The general features of the discontinuities associated with loading and unloading boundaries are established, and examples are presented of unloading boundaries overtaking simple waves.


Sign in / Sign up

Export Citation Format

Share Document