Near-Infrared High Resolution Spectroscopy of High-z QSO Absorption Systems with the Subaru Adaptive Optics System

Author(s):  
Naoto Kobayashi ◽  
Takuji Tsujimoto ◽  
Yosuke Minowa
2002 ◽  
Vol 12 ◽  
pp. 629
Author(s):  
Seran G. Gibbard ◽  
Bruce A. Macintosh ◽  
Claire E. Max ◽  
Henry Roe ◽  
Imke de Pater ◽  
...  

AbstractSaturn’s largest moon Titan is the only satellite in the Solar System with a substantial atmosphere. Photolysis of methane creates a hydrocarbon haze in Titan’s atmosphere that is opaque to visible light. The new adaptive optics system on the 10–meter W. M. Keck Telescope enables us to observe Titan with a resolution of 0.04 arcseconds, or 20 resolution elements across the disk. By observing at near-infrared wavelengths that are methane band windows we can see through Titan’s hydrocarbon haze to the surface beneath. Recent adaptive optics images of Titan both in broadband (J, H, and K) filters and in narrowband filters that selectively probe Titan’s surface and atmosphere allow us to determine surface albedo and properties of the hydrocarbon haze layer. Future observations will include high-resolution spectroscopy coupled with adaptive optics to obtain spectra of individual surface features.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


Author(s):  
Gloria Guilluy ◽  
Alessandro Sozzetti ◽  
Paolo Giacobbe ◽  
Aldo S. Bonomo ◽  
Giuseppina Micela

AbstractSince the first discovery of an extra-solar planet around a main-sequence star, in 1995, the number of detected exoplanets has increased enormously. Over the past two decades, observational instruments (both onboard and on ground-based facilities) have revealed an astonishing diversity in planetary physical features (i. e. mass and radius), and orbital parameters (e.g. period, semi-major axis, inclination). Exoplanetary atmospheres provide direct clues to understand the origin of these differences through their observable spectral imprints. In the near future, upcoming ground and space-based telescopes will shift the focus of exoplanetary science from an era of “species discovery” to one of “atmospheric characterization”. In this context, the Atmospheric Remote-sensing Infrared Exoplanet Large (Ariel) survey, will play a key role. As it is designed to observe and characterize a large and diverse sample of exoplanets, Ariel will provide constraints on a wide gamut of atmospheric properties allowing us to extract much more information than has been possible so far (e.g. insights into the planetary formation and evolution processes). The low resolution spectra obtained with Ariel will probe layers different from those observed by ground-based high resolution spectroscopy, therefore the synergy between these two techniques offers a unique opportunity to understanding the physics of planetary atmospheres. In this paper, we set the basis for building up a framework to effectively utilise, at near-infrared wavelengths, high-resolution datasets (analyzed via the cross-correlation technique) with spectral retrieval analyses based on Ariel low-resolution spectroscopy. We show preliminary results, using a benchmark object, namely HD 209458 b, addressing the possibility of providing improved constraints on the temperature structure and molecular/atomic abundances.


2003 ◽  
Vol 211 ◽  
pp. 87-90
Author(s):  
M. Tamura ◽  
T. Naoi ◽  
Y. Oasa ◽  
Y. Nakajima ◽  
C. Nagashima ◽  
...  

We are currently conducting three kinds of IR surveys of star forming regions (SFRs) in order to seek for very low-mass young stellar populations. First is a deep JHKs-bands (simultaneous) survey with the SIRIUS camera on the IRSF 1.4m or the UH 2.2m telescopes. Second is a very deep JHKs survey with the CISCO IR camera on the Subaru 8.2m telescope. Third is a high resolution companion search around nearby YSOs with the CIAO adaptive optics coronagraph IR camera on the Subaru. In this contribution, we describe our SIRIUS camera and present preliminary results of the ongoing surveys with this new instrument.


2004 ◽  
Vol 202 ◽  
pp. 99-102
Author(s):  
B. R. Oppenheimer ◽  
R. G. Dekany ◽  
M. Troy ◽  
T. Hayward ◽  
B. Brandl

We present a study of the Palomar Adaptive Optics System and the PHARO near infrared camera in coronagraphic mode. The camera provides two different focal plane occulting masks–opaque circular disks 0.43 and 0.97″ across. Three different pupil plane apodizing masks (Lyot masks) are also provided. The six different combinations of Lyot mask and focal plane mask suppress differently the point spread function of a bright star centered on the focal plane mask. We obtained images of the bright nearby star Gliese 614 with all six different configurations in the K filter. We measured the dynamic range achievable with these configurations. Within 2.5″, the dynamic range is at least 8 magnitudes at the 5σ level and as high as 12 in a 1 s exposure. This represents a substantial gain over similar techniques without adaptive optics.


2006 ◽  
Vol 2 (S235) ◽  
pp. 405-405
Author(s):  
Marc Huertas-Company ◽  
Daniel Rouan ◽  
Geneviève Soucail ◽  
Olivier Le Fèvre ◽  
Lidia Tasca

AbstractWe present the results of observations of distant galaxies (z ~ 0.8) at high spatial resolution (~0.1"). We observed 7 fields of 1' × 1' with the NACO Adaptive Optics system (VLT) in Ks (2.2μm) band with typical V ~ 14 guide stars and 3h integration time per field. Observed fields are selected within the COSMOS survey area. We analyze the morphologies by means of B/D (Bulge/Disk) decomposition with GIM2D and CAS (Concentration-Asymmetry) estimators for 79 galaxies with magnitudes between Ks = 17 − 23 and classify them in three main morphological types (Late Type, Early Type and Irregulars). We obtain for the first time an estimate of the distribution of galaxy types at redshift z ~ 1 as measured from the near infrared at high spatial resolution.


2007 ◽  
Vol 15 (5) ◽  
pp. 1983 ◽  
Author(s):  
Jacques M. Beckers ◽  
Torben E. Andersen ◽  
Mette Owner-Petersen

2001 ◽  
Vol 122 (3) ◽  
pp. 1636-1643 ◽  
Author(s):  
Henry G. Roe ◽  
Donald Gavel ◽  
Claire Max ◽  
Imke de Pater ◽  
Seran Gibbard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document