Test of Large Eddy Simulation in Complex Flow with High Schmidt Number

Author(s):  
Yang Na ◽  
Seungmin Lee
2021 ◽  
Vol 11 (15) ◽  
pp. 7167
Author(s):  
Liang Xu ◽  
Xu Zhao ◽  
Lei Xi ◽  
Yonghao Ma ◽  
Jianmin Gao ◽  
...  

Swirling impinging jet (SIJ) is considered as an effective means to achieve uniform cooling at high heat transfer rates, and the complex flow structure and its mechanism of enhancing heat transfer have attracted much attention in recent years. The large eddy simulation (LES) technique is employed to analyze the flow fields of swirling and non-swirling impinging jet emanating from a hole with four spiral and straight grooves, respectively, at a relatively high Reynolds number (Re) of 16,000 and a small jet spacing of H/D = 2 on a concave surface with uniform heat flux. Firstly, this work analyzes two different sub-grid stress models, and LES with the wall-adapting local eddy-viscosity model (WALEM) is established for accurately predicting flow and heat transfer performance of SIJ on a flat surface. The complex flow field structures, spectral characteristics, time-averaged flow characteristics and heat transfer on the target surface for the swirling and non-swirling impinging jets are compared in detail using the established method. The results show that small-scale recirculation vortices near the wall change the nearby flow into an unstable microwave state, resulting in small-scale fluctuation of the local Nusselt number (Nu) of the wall. There is a stable recirculation vortex at the stagnation point of the target surface, and the axial and radial fluctuating speeds are consistent with the fluctuating wall temperature. With the increase in the radial radius away from the stagnation point, the main frequency of the fluctuation of wall temperature coincides with the main frequency of the fluctuation of radial fluctuating velocity at x/D = 0.5. Compared with 0° straight hole, 45° spiral hole has a larger fluctuating speed because of speed deflection, resulting in a larger turbulence intensity and a stronger air transport capacity. The heat transfer intensity of the 45° spiral hole on the target surface is slightly improved within 5–10%.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Xingsi Han ◽  
Siniša Krajnović

The numerical study reported here deals with the passive flow control around a two-dimensional D-shaped bluff body at a Reynolds number of Re=3.6×104. A small circular control cylinder located in the near wake behind the main bluff body is employed as a local disturbance of the shear layer and the wake. 3D simulations are carried out using a newly developed very large eddy simulation (VLES) method, based on the standard k − ε turbulence model. The aim of this study is to validate the performance of this method for the complex flow control problem. Numerical results are compared with available experimental data, including global flow parameters and velocity profiles. Good agreements are observed. Numerical results suggest that the bubble recirculation length is increased by about 36% by the local disturbance of the small cylinder, which compares well to the experimental observations in which the length is increased by about 38%. A drag reduction of about 18% is observed in the VLES simulation, which is quite close to the experimental value of 17.5%. It is found that the VLES method is able to predict the flow control problem quite well.


Author(s):  
Tausif Jamal ◽  
D. Keith Walters

Abstract Unsteady turbulent wall bounded flows can produce complex flow physics including temporally varying mean pressure gradients, intermittent regions of high turbulence intensity, and interaction of different scales of motion. As a representative example, pulsating channel flow presents significant challenges for newly developed and existing turbulence models in computational fluid dynamics (CFD) simulations. The present study investigates the performance of the Dynamic Hybrid RANS-LES (DHRL) model with a newly proposed dynamic time filtering (DTF) technique, compared against an industry standard Reynolds-Averaged Navier-Stokes (RANS) model, Monotonically Integrated Large Eddy Simulation (MILES), and two conventional Hybrid RANS-LES (HRL) models. Model performance is evaluated based on comparison to previously documented Large Eddy Simulation (LES) results. Simulations are performed for a fully developed flow in a channel with time-periodic driving pressure gradient. Results highlight the relative merits of each model type and indicate that the use of a dynamic time filtering technique improves the accuracy of the DHRL model when compared to a static time filtering technique. A comprehensive evaluation of the results suggests that the DHRL-DTF method provides the most consistently accurate reproduction of the time-dependent mean flow characteristics for all models investigated.


2010 ◽  
Vol 24 (13) ◽  
pp. 1287-1290 ◽  
Author(s):  
LI-WEI CHEN ◽  
CHANG-YUE XU ◽  
XI-YUN LU

A supersonic flow past a hemispherical nose with an opposing jet placed on its axis has been investigated using large eddy simulation. We find that the flow behaviors depend mainly on the jet total pressure ratio and can be classified into three typical flow regimes of unstable, stable and transition. The unstable flow regime is characterized by an oscillatory bow shock with a multi-jet-cell structure and the stable flow regime by a steady bow shock with a single jet cell. The transition regime lies between the unstable and stable ones with a complex flow evolution. Turbulence statistics are further analyzed to reveal the relevant turbulent behaviors in the three flow regimes. The results obtained in this study provide a physical insight into the understanding of the mechanisms underlying this complex flow.


2021 ◽  
pp. 1-19
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract In this study, the internal cooling channel was investigated without any bend. Smooth surfaces and dimpled surfaces were investigated using the different combinations of connecting circular and rectangular holes. The computations were performed using the Large Eddy Simulation (LES) model for Reynolds (Re) numbers from 10,000 to 50,000. A total of six different connecting holes were investigated with a smooth and dimpled surface. A partial spherical dimple with two circular holes showed the highest heat transfer, but it has a higher pressure loss penalty. Even though the Leaf dimple with the rectangle indicated a low heat transfer because of low-pressure drops, it represents the highest efficiency at higher Reynolds numbers.


2012 ◽  
Vol 19 ◽  
pp. 109-113
Author(s):  
GUO-LEI WANG ◽  
XI-YUN LU

A transverse jet issuing from an elliptic injector into a supersonic crossflow has been investigated using large eddy simulation. The complex flow structures and the relevant flow features are analyzed to exhibit the evolution of shock structures, vertical structures and jet shear layer. A horseshoe vortex is formed in the upstream of the jet and the shock structures exhibit small fluctuations due to the flow interaction. The kidney-shaped counter-rotating vortex pair dominates the flow field in the downstream of the jet. The elliptic jet spreads rapidly in the spanwise direction and then the axis-switching phenomenon occurs. Intense turbulent fluctuations are identified behind the Mach disk because of the large velocity gradients.


Author(s):  
Mostafa Esmaeili ◽  
Asghar Afshari ◽  
Farhad A. Jaberi

An Eulerian–Lagrangian mathematical/computational methodology is employed for large-eddy simulation (LES) and detailed study of turbulent mixing in jet in cross-flow (JICF) configuration. Accurate prediction of mixing in JICF is crucially important to the development of advanced combustion systems. A high-order multiblock finite difference (FD) computational algorithm is used to solve the Eulerian velocity and pressure equations in a generalized coordinate system. The composition field, describing the mixing, is obtained from the filtered mass density function (FMDF) and its stochastic Lagrangian Monte-Carlo (MC) solver. Our simulations are shown to accurately predict the important flow features present in JICF such as the counter-rotating vortex pair (CVP), horseshoe, shear layer, and wake vortices. The consistency of the FD and MC parts of the hybrid LES/FMDF model is established for the simulated JICF in various conditions, indicating the numerical accuracy of the model. The effects of parameters influencing the jet penetration, entrainment, and turbulent mixing such as the jet velocity profile, and jet pulsation are investigated. The results show that the jet exit velocity profile significantly changes the trajectory and mixing of injected fluid. The jet pulsation is also shown to enhance the mixing depending on the flow Strouhal number. The LES/FMDF results are shown to be in good agreement with the available experimental data, confirming the reliability of LES/FMDF method for numerical simulation of turbulent mixing in complex flow configurations.


Sign in / Sign up

Export Citation Format

Share Document