scholarly journals On Testing the Missing at Random Assumption

Author(s):  
Manfred Jaeger
Keyword(s):  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hanji He ◽  
Guangming Deng

We extend the mean empirical likelihood inference for response mean with data missing at random. The empirical likelihood ratio confidence regions are poor when the response is missing at random, especially when the covariate is high-dimensional and the sample size is small. Hence, we develop three bias-corrected mean empirical likelihood approaches to obtain efficient inference for response mean. As to three bias-corrected estimating equations, we get a new set by producing a pairwise-mean dataset. The method can increase the size of the sample for estimation and reduce the impact of the dimensional curse. Consistency and asymptotic normality of the maximum mean empirical likelihood estimators are established. The finite sample performance of the proposed estimators is presented through simulation, and an application to the Boston Housing dataset is shown.


Psych ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 197-232
Author(s):  
Yves Rosseel

This paper discusses maximum likelihood estimation for two-level structural equation models when data are missing at random at both levels. Building on existing literature, a computationally efficient expression is derived to evaluate the observed log-likelihood. Unlike previous work, the expression is valid for the special case where the model implied variance–covariance matrix at the between level is singular. Next, the log-likelihood function is translated to R code. A sequence of R scripts is presented, starting from a naive implementation and ending at the final implementation as found in the lavaan package. Along the way, various computational tips and tricks are given.


2021 ◽  
Author(s):  
Andrea Gabrio ◽  
Rachael Hunter ◽  
Alexina J. Mason ◽  
Gianluca Baio

1998 ◽  
Vol 26 (1) ◽  
pp. 164-182 ◽  
Author(s):  
Mark J. van der Laan ◽  
Ian W. McKeague

2011 ◽  
Vol 101 (3) ◽  
pp. 538-543 ◽  
Author(s):  
Bryan S Graham ◽  
Keisuke Hirano

We consider estimation of population averages when data are missing at random. If some cells contain few observations, there can be substantial gains from imposing parametric restrictions on the cell means, but there is also a danger of misspecification. We develop a simple empirical Bayes estimator, which combines parametric and unadjusted estimates of cell means in a data-driven way. We also consider ways to use knowledge of the form of the propensity score to increase robustness. We develop an empirical Bayes extension of a double robust estimator. In a small simulation study, the empirical Bayes estimators perform well. They are similar to fully nonparametric methods and robust to misspecification when cells are moderate to large in size, and when cells are small they maintain the benefits of parametric methods and can have lower sampling variance.


Sign in / Sign up

Export Citation Format

Share Document