Metabolite Clearance During Wakefulness and Sleep

Author(s):  
Stephen B. Hladky ◽  
Margery A. Barrand
Keyword(s):  
2018 ◽  
Vol 12 ◽  
pp. 117906951878376 ◽  
Author(s):  
Jihwan Myung ◽  
Dean Wu ◽  
Valérie Simonneaux ◽  
Timothy Joseph Lane

2020 ◽  
Vol 6 (38) ◽  
pp. eaba0398 ◽  
Author(s):  
Junyu Cao ◽  
Alexander B. Herman ◽  
Geoffrey B. West ◽  
Gina Poe ◽  
Van M. Savage

Sleep serves disparate functions, most notably neural repair, metabolite clearance and circuit reorganization. Yet the relative importance remains hotly debated. Here, we create a novel mechanistic framework for understanding and predicting how sleep changes during ontogeny and across phylogeny. We use this theory to quantitatively distinguish between sleep used for neural reorganization versus repair. Our findings reveal an abrupt transition, between 2 and 3 years of age in humans. Specifically, our results show that differences in sleep across phylogeny and during late ontogeny (after 2 or 3 years in humans) are primarily due to sleep functioning for repair or clearance, while changes in sleep during early ontogeny (before 2 or 3 years) primarily support neural reorganization and learning. Moreover, our analysis shows that neuroplastic reorganization occurs primarily in REM sleep but not in NREM. This developmental transition suggests a complex interplay between developmental and evolutionary constraints on sleep.


2020 ◽  
Author(s):  
Ravi Kedarasetti ◽  
Kevin L. Turner ◽  
Christina Echagarruga ◽  
Bruce J. Gluckman ◽  
Patrick J. Drew ◽  
...  

Abstract The brain lacks a conventional lymphatic system to remove metabolic waste. It has been proposed that fluid movement through the arteriolar paravascular space (PVS) promotes metabolite clearance. We performed simulations to understand how arteriolar pulsations and dilations, and brain deformability affect PVS fluid flow. In simulations with compliant brain tissue, arteriolar pulsations did not drive appreciable flows in the PVS. However, when the arteriole dilated as in functional hyperemia, there was a marked movement of fluid. Simulations suggest that functional hyperemia may also serve to increase fluid exchange between the PVS and the subarachnoid space. We measured blood vessels and brain tissue displacement simultaneously in awake, head-fixed mice using two-photon microscopy. These measurements showed that brain deforms in response to pressure changes in PVS, as predicted by simulations. Our results show that the deformability of the brain tissue needs to be accounted for when studying fluid flow and metabolite transport.Acknowledgements: This work was supported by NSF Grant CBET 1705854.


2020 ◽  
Author(s):  
Ravi Kedarasetti ◽  
Kevin L. Turner ◽  
Christina Echagarruga ◽  
Bruce J. Gluckman ◽  
Patrick J. Drew ◽  
...  

Abstract The brain lacks a conventional lymphatic system to remove metabolic waste. It has been proposed that fluid movement through the arterial paravascular space (PVS) promotes metabolite clearance. We performed simulations to understand how arterial pulsations and dilations, and brain deformability affect PVS fluid flow. In simulations with compliant brain tissue, arterial pulsations did not drive appreciable flows in the PVS. However, when the artery dilated as in functional hyperemia, there was a marked movement of fluid. Simulations suggest that functional hyperemia may also serve to increase fluid exchange between the PVS and the subarachnoid space. We measured blood vessels and brain tissue displacement simultaneously in awake, head-fixed mice using two-photon microscopy. Measurements show that brain deforms in response to fluid movement in PVS, as predicted by simulations. Our results show that the deformability of the brain tissue needs to be accounted for when studying fluid flow and metabolite transport.


2014 ◽  
Vol 29 (3) ◽  
pp. 553-561 ◽  
Author(s):  
Juan M. Zolezzi ◽  
Nibaldo C. Inestrosa

Sign in / Sign up

Export Citation Format

Share Document