fluid movement
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 41)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Doszhan Yeleussinov ◽  
Arman Assangaliyev ◽  
Assel Ospanova ◽  
Vener Nagimov ◽  
Elena Kirpichikova ◽  
...  

Abstract Hydraulic fracturing has been demonstrated to be a cost-effective method of developing low-permeability heterogeneous clastic reservoirs with vertical wells. In the presence of a thin shale layer as a seal, monitoring effective fracture height becomes extremely important. The conventional approach of a single-regime production logging may be ineffective due to the complex geometry of fluid flow in the near-wellbore zone around the well. The paper describes the experience of the multi-rate through barrier diagnostics as a method of improving hydraulic fracturing evaluation. The standard way to diagnose the effectiveness of hydraulic fracturing is to log a survey under current operating conditions. In general, temperature and passive spectral acoustic measurements provide useful information on identifying the boundaries of fluid movement behind production casing; however, it is difficult to determine if flow occurs in the vertical hydraulic fracture or channeling through damaged cement in a single-regime survey. The multi-rate through-barrier diagnostics allow analyzing the flow dynamics of the wellbore-fracture-formation system under different flowing regimes, enabling a more accurate assessment of fluid movement in the near-wellbore environment within several meters. The paper includes the results of the multi-rate logging survey campaign in vertical water injection wells drilled in a low-permeability clastic reservoir. A proppant-based hydraulic fracturing of the target formation was carried out in the wells. The geological structure of the developed reservoir includes a thin shale layer (break) that separates the target oil-saturated interval from the overlying water bearing reservoir. In order for the operator to optimize future stimulation programs identification of effective hydraulic fracture height in reservoir regions with different shale thicknesses is crucial. The upper boundaries of the injected fluid movement behind the casing were determined based on the survey results. Analysis of the acoustic and temperature field dynamics helped more reliably evaluate the nature of the fluid movement behind the casing, whether flow happens in vertical fracture or cement channeling. This results in a more precise quantitative assessment of the injection profile in the targeted and untargeted reservoir units.


2021 ◽  
Author(s):  
Ravi Kedarasetti ◽  
Patrick J. Drew ◽  
Francesco Costanzo

The movement of fluid into, through, and out of the brain plays an important role in clearing metabolic waste. However, there is controversy regarding the mechanisms driving fluid movement, and whether the movement metabolic waste is primarily driven by diffusion or convection. The dilation of penetrating arterioles in the brain in response to increases in neural activity (neurovascular coupling) is an attractive candidate for driving fluid circulation, as it drives deformation of the brain tissue and of the paravascular space around arteries, resulting in fluid movement. We simulated the effects of vasodilation on fluid movement into and out of the brain using a novel poroelastic model of brain tissue. We found that arteriolar dilations could drive convective flow through the brain radially outward from the arteriole, and that this flow is sensitive to the dynamics of the dilation. Simulations of sleep-like conditions, with larger vasodilations and increased extracellular volume in the brain showed enhanced movement of fluid from the paravascular space into the brain. Our simulations suggest that both sensory-evoked and sleep-related arteriolar dilations can drive convective flow of cerebrospinal fluid from the paravascular space into the brain tissue around arterioles.


2021 ◽  
Author(s):  
Jose Mata ◽  
Zunerge Guevara ◽  
Luis Quintero ◽  
Carlos Vasquez ◽  
Hernando Trujillo ◽  
...  

Abstract Although leakages in well tubulars have always existed, their occurrence has become very frequent as the number of active wells in mature fields increases. The catastrophic risk of these leaks is an increase in the number of environmental accidents in the oil and gas industry. One of the fundamental causes of leaks is corrosion, which plays a negative role in the productive life of the wells. Generally, these environmental events are associated with surface or near-surface sources. Since multiple casing strings exist within this depth range, the identification of the leak location becomes extremely difficult. In view of this, the industry has put much effort in improving and new technology to be more precise and comprehensive in diagnosing these leaks. The evolution of two of such technologies will be addressed in this paper. The first one is a new electromagnetic high-definition frequency tool for pipes and multiples casing for metal loss detection. This state-of-the-art technology is a noticeable improvement over existing tools, due to an important increase in the number of sources, number of detectors and wide range of working frequencies. The combination of these changes allows for the evaluation of metal loss in up to 5 concentric casings in a single run. Furthermore, the tool is small in diameter which makes it compatible with production pipes without the need of a workover rig. This versatility obviously helps in the preworkover diagnosis before deciding to move a rig to location to eventually remedy any leak problems. The electromagnetic technology is complemented, with the latest leak detection acoustic technology. A spontaneous audio source is normally associated with downhole fluid movements. The tool has an array of 8 hydrophones with a working frequency range from 100 Hz to 100 KHz. These two different technologies based on independent fundamental principles, allows for the detection of leaks in multiple concentric pipes with great vertical and radial precision to identify the exact location of leaks as small as to 0.02 L/min. the depth of investigation of the system is up to 10 feet. Therefore, it is possible to detect fluid movement within the formation. Pulsed neutron technology was included in the study to detect water movement behind the casing to establish the flow path to the surface in addition to the leak point. A very complex acquisition program was established that was undoubtedly a key success factor in the results obtained. The electromagnetic tool determined the depth of severe casing metal loss in 7-inch casing, also the acoustic tool detected the noise of fluid movement in the 7-inch annulus, and the pulsed-neutron tool showed the beginning of water movement at the same interval the temperature log, also included in the same tool string showed a considerable change that correlated with all these logs, indicating the point of communication in this well. After establishing the uniqueness of the solution, this diagnosis helped the operator define an intervention plan for this well, and to make the appropriate corrections in the field development strategy.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3128
Author(s):  
Thomas R. Coughlin ◽  
Ali Sana ◽  
Kevin Voss ◽  
Abhilash Gadi ◽  
Upal Basu-Roy ◽  
...  

Osteosarcoma (OS) is an aggressive bone cancer originating in the mesenchymal lineage. Prognosis for metastatic disease is poor, with a mortality rate of approximately 40%; OS is an aggressive disease for which new treatments are needed. All bone cells are sensitive to their mechanical/physical surroundings and changes in these surroundings can affect their behavior. However, it is not well understood how OS cells specifically respond to fluid movement, or substrate stiffness—two stimuli of relevance in the tumor microenvironment. We used cells from spontaneous OS tumors in a mouse engineered to have a bone-specific knockout of pRb-1 and p53 in the osteoblast lineage. We silenced Sox2 (which regulates YAP) and tested the effect of fluid flow shear stress (FFSS) and substrate stiffness on YAP expression/activity—which was significantly reduced by loss of Sox2, but that effect was reversed by FFSS but not by substrate stiffness. Osteogenic gene expression was also reduced in the absence of Sox2 but again this was reversed by FFSS and remained largely unaffected by substrate stiffness. Thus we described the effect of two distinct stimuli on the mechanosensory and osteogenic profiles of OS cells. Taken together, these data suggest that modulation of fluid movement through, or stiffness levels within, OS tumors could represent a novel consideration in the development of new treatments to prevent their progression.


2021 ◽  
Vol 40 (5) ◽  
pp. 383-384
Author(s):  
Mohammed Badri ◽  
Ali Yousif ◽  
Maged Mabrook

Geoscientists and reservoir engineers are challenged to integrate data of different scales to better understand fluid movement in oil reservoirs. Different technologies are capable of imaging fluid movement in the reservoir at different scales. Two-dimensional fluid imaging has been achieved recently through crosswell and surface-to-borehole electromagnetic (EM) measurements. Three-dimensional fluid movement imaging has shown potential by using surface seismic data volumes. The Multiscale Reservoir Surveillance and Monitoring Workshop, held virtually 7–9 December 2020, attempted to address the challenge of how to integrate these measurements obtained at different scales into a workflow to improve the understanding of fluid flow, which is critical for sweep efficiency and recovery.


2021 ◽  
Vol 4 (3) ◽  
pp. 25
Author(s):  
И.Р. Шамсиев ◽  
◽  
А.П. Парпиев ◽  
Х.С. Усманов

In the technology of primary processing of cotton, there is a process of drying raw cotton. When this process is carried out, a mixture of a drying agent (hot air) with dust and light small trash impuritiesis formed in the drying drum. The task of these theoretical studies is to substantiate the variant of suction and purification of the air flow with trash impurities formed in the process of drying raw cotton, with the receipt of the main parametric characteristics and their boundary indicators.Key words: raw cotton, drying, drying drum, trash, dust, cleaning, fluid movement.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 139
Author(s):  
Clare Rusbridge ◽  
Penny Knowler

Brachycephalic dogs remain popular, despite the knowledge that this head conformation is associated with health problems, including airway compromise, ocular disorders, neurological disease, and other co-morbidities. There is increasing evidence that brachycephaly disrupts cerebrospinal fluid movement and absorption, predisposing ventriculomegaly, hydrocephalus, quadrigeminal cistern expansion, Chiari-like malformation, and syringomyelia. In this review, we focus on cerebrospinal fluid physiology and how this is impacted by brachycephaly, airorhynchy, and associated craniosynostosis.


Sign in / Sign up

Export Citation Format

Share Document