On the application of group theory to the renormalization-group method

Author(s):  
Marko V. Jarić
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Takashi Yanagisawa

Abstract We investigate the renormalization group theory of the generalized multi-vertex sine-Gordon model by employing the dimensional regularization method and also the Wilson renormalization group method. The vertex interaction is given by $\cos(k_j\cdot \phi)$, where $k_j$ ($j=1,2,\ldots,M$) are momentum vectors and $\phi$ is an $N$-component scalar field. The beta functions are calculated for the sine-Gordon model with multiple cosine interactions. The second-order correction in the renormalization procedure is given by the two-point scattering amplitude for tachyon scattering. We show that new vertex interaction with the momentum vector $k_{\ell}$ is generated from two vertex interactions with vectors $k_i$ and $k_j$ when $k_i$ and $k_j$ meet the condition $k_{\ell}=k_i\pm k_j$, called the triangle condition. A further condition $k_i\cdot k_j=\pm 1/2$ is required within the dimensional regularization method. The renormalization group equations form a set of closed equations when $\{k_j\}$ form an equilateral triangle for $N=2$ or a regular tetrahedron for $N=3$. The Wilsonian renormalization group method gives qualitatively the same result for beta functions.


Author(s):  
Y. Meurice ◽  
R. Perry ◽  
S.-W. Tsai

The renormalization group (RG) method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The Theme Issue provides articles reviewing recent progress made using the RG method in atomic, condensed matter, nuclear and particle physics. In the following, we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.


Sign in / Sign up

Export Citation Format

Share Document