Differential Code Bias of GPS Receivers in Low Earth Orbit: An Assessment for CHAMP and SAC-C

2005 ◽  
pp. 465-470 ◽  
Author(s):  
Stefan Heise ◽  
Claudia Stolle ◽  
Stefan Schlüter ◽  
Norbert Jakowski
2021 ◽  
Vol 95 (7) ◽  
Author(s):  
Xingxing Li ◽  
Wei Zhang ◽  
Keke Zhang ◽  
Qian Zhang ◽  
Xin Li ◽  
...  

2016 ◽  
Vol 34 (2) ◽  
pp. 259-269 ◽  
Author(s):  
S. G. Jin ◽  
R. Jin ◽  
D. Li

Abstract. The differential code bias (DCB) of global navigation satellite systems (GNSSs) affects precise ionospheric modeling and applications. In this paper, daily DCBs of the BeiDou Navigation Satellite System (BDS) are estimated and investigated from 2-year multi-GNSS network observations (2013–2014) based on global ionospheric maps (GIMs) from the Center for Orbit Determination in Europe (CODE), which are compared with Global Positioning System (GPS) results. The DCB of BDS satellites is a little less stable than GPS solutions, especially for geostationary Earth orbit (GEO) satellites. The BDS GEO observations decrease the precision of inclined geosynchronous satellite orbit (IGSO) and medium Earth orbit (MEO) DCB estimations. The RMS of BDS satellites DCB decreases to about 0.2 ns when we remove BDS GEO observations. Zero-mean condition effects are not the dominant factor for the higher RMS of BDS satellites DCB. Although there are no obvious secular variations in the DCB time series, sub-nanosecond variations are visible for both BDS and GPS satellites DCBs during 2013–2014. For satellites in the same orbital plane, their DCB variations have similar characteristics. In addition, variations in receivers DCB in the same region are found with a similar pattern between BDS and GPS. These variations in both GPS and BDS DCBs are mainly related to the estimated error from ionospheric variability, while the BDS DCB intrinsic variation is in sub-nanoseconds.


2020 ◽  
Vol 19 (6) ◽  
pp. 453-459
Author(s):  
Mohammed A. Abid ◽  
Ashraf Mousa

This paper proposes to determine the GPS satellites DCB using nine GPS receivers located in the middle of Egypt. During four seasons and 36 days characterized by quiet geomagnetism, the performance of the proposed method is examined. The dual GPS data selected is used and applied to the GPS receiver chain notes. The Bernese program V.5 is used to estimate DCBs from the data of a single GPS station where the results of the algorithm operation are compared to the CODE DCB data and the main differences in GLONASS data are recorded. According to the comparison of the results between the proposed method and the currently existing methods, it can be shown that the accuracy of the DCB estimates is at a level of about 0.31 and 0.17 ns.


2007 ◽  
Vol 60 (3) ◽  
pp. 349-362 ◽  
Author(s):  
Takuji Ebinuma ◽  
Martin Unwin

GPS receivers have been used successfully on low Earth orbit (LEO) satellite missions for several years. The use of a GPS receiver at altitudes higher than LEO, however, is non-trivial as the receiver will be outside the main lobe of the GPS broadcast signals, and it will have to track signals from GPS satellites transmitting from the other side of the Earth. This paper will review the special hardware and software adaptations required for GPS receiver operations on a medium Earth orbit or geostationary satellite, along with preliminary results from simulations and an in-orbit experiment.


Sign in / Sign up

Export Citation Format

Share Document