Temporal Scale Spaces

Author(s):  
Daniel Fagerström
Keyword(s):  
2005 ◽  
Vol 64 (2-3) ◽  
pp. 97-106 ◽  
Author(s):  
Daniel Fagerström
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5312
Author(s):  
Yanni Zhang ◽  
Yiming Liu ◽  
Qiang Li ◽  
Jianzhong Wang ◽  
Miao Qi ◽  
...  

Recently, deep learning-based image deblurring and deraining have been well developed. However, most of these methods fail to distill the useful features. What is more, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from a high computational burden. We propose a lightweight fusion distillation network (LFDN) for image deblurring and deraining to solve the above problems. The proposed LFDN is designed as an encoder–decoder architecture. In the encoding stage, the image feature is reduced to various small-scale spaces for multi-scale information extraction and fusion without much information loss. Then, a feature distillation normalization block is designed at the beginning of the decoding stage, which enables the network to distill and screen valuable channel information of feature maps continuously. Besides, an information fusion strategy between distillation modules and feature channels is also carried out by the attention mechanism. By fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring and deraining results with a smaller number of parameters and outperform the existing methods in model complexity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lei Yan ◽  
Qun Hao ◽  
Jie Cao ◽  
Rizvi Saad ◽  
Kun Li ◽  
...  

AbstractImage fusion integrates information from multiple images (of the same scene) to generate a (more informative) composite image suitable for human and computer vision perception. The method based on multiscale decomposition is one of the commonly fusion methods. In this study, a new fusion framework based on the octave Gaussian pyramid principle is proposed. In comparison with conventional multiscale decomposition, the proposed octave Gaussian pyramid framework retrieves more information by decomposing an image into two scale spaces (octave and interval spaces). Different from traditional multiscale decomposition with one set of detail and base layers, the proposed method decomposes an image into multiple sets of detail and base layers, and it efficiently retains high- and low-frequency information from the original image. The qualitative and quantitative comparison with five existing methods (on publicly available image databases) demonstrate that the proposed method has better visual effects and scores the highest in objective evaluation.


Humanities ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Kiley M. Kost

The complex narrative composition of image and text in Max Frisch’s Der Mensch erscheint im Holozän discloses entanglements between humans and nonhuman entities that impact the narrative and that demand careful consideration. The story depicts the aging protagonist’s struggle with memory loss and his careful examination of the valley’s mountain formations in fear of a landslide. In this analysis, I show that both of these threats can be read as entangled with nonhuman agents. By focusing on the material dimension of the text, two central and related shifts occur: the background element of rain becomes foregrounded in the narrative, and the natural formations of the valley that are assumed to be static are revealed to be dynamic. These shifts lead to an interpretation of Frisch’s text focused on the impacts of rain and the temporal scale of the text’s geologic dimension. Approaching the text through the lens of material ecocriticism unveils the multiple agencies at play, decenters the human, and illustrates the embodied experience of climate change.


2020 ◽  
Vol 4 (1) ◽  
pp. 46-63
Author(s):  
Hanan ElNaghy ◽  
Leo Dorst

AbstractWhen fitting archaeological artifacts, one would like to have a representation that simplifies fragments while preserving their complementarity. In this paper, we propose to employ the scale-spaces of mathematical morphology to hierarchically simplify potentially fitting fracture surfaces. We study the masking effect when morphological operations are applied to selected subsets of objects. Since fitting locally depends on the complementarity of fractures only, we introduce ‘Boundary Morphology’ on surfaces rather than volumes. Moreover, demonstrating the Lipschitz nature of the terracotta fractures informs our novel extrusion method to compute both closing and opening operations simultaneously. We also show that in this proposed representation the effects of abrasion and uncertainty are naturally bounded, justifying the morphological approach. This work is an extension of our contribution earlier published in the proceedings of ISMM2019 [10].


Sign in / Sign up

Export Citation Format

Share Document