scholarly journals A Lightweight Fusion Distillation Network for Image Deblurring and Deraining

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5312
Author(s):  
Yanni Zhang ◽  
Yiming Liu ◽  
Qiang Li ◽  
Jianzhong Wang ◽  
Miao Qi ◽  
...  

Recently, deep learning-based image deblurring and deraining have been well developed. However, most of these methods fail to distill the useful features. What is more, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from a high computational burden. We propose a lightweight fusion distillation network (LFDN) for image deblurring and deraining to solve the above problems. The proposed LFDN is designed as an encoder–decoder architecture. In the encoding stage, the image feature is reduced to various small-scale spaces for multi-scale information extraction and fusion without much information loss. Then, a feature distillation normalization block is designed at the beginning of the decoding stage, which enables the network to distill and screen valuable channel information of feature maps continuously. Besides, an information fusion strategy between distillation modules and feature channels is also carried out by the attention mechanism. By fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring and deraining results with a smaller number of parameters and outperform the existing methods in model complexity.

Author(s):  
Qiang Yu ◽  
Feiqiang Liu ◽  
Long Xiao ◽  
Zitao Liu ◽  
Xiaomin Yang

Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maiki Higa ◽  
Shinya Tanahara ◽  
Yoshitaka Adachi ◽  
Natsumi Ishiki ◽  
Shin Nakama ◽  
...  

AbstractIn this report, we propose a deep learning technique for high-accuracy estimation of the intensity class of a typhoon from a single satellite image, by incorporating meteorological domain knowledge. By using the Visual Geometric Group’s model, VGG-16, with images preprocessed with fisheye distortion, which enhances a typhoon’s eye, eyewall, and cloud distribution, we achieved much higher classification accuracy than that of a previous study, even with sequential-split validation. Through comparison of t-distributed stochastic neighbor embedding (t-SNE) plots for the feature maps of VGG with the original satellite images, we also verified that the fisheye preprocessing facilitated cluster formation, suggesting that our model could successfully extract image features related to the typhoon intensity class. Moreover, gradient-weighted class activation mapping (Grad-CAM) was applied to highlight the eye and the cloud distributions surrounding the eye, which are important regions for intensity classification; the results suggest that our model qualitatively gained a viewpoint similar to that of domain experts. A series of analyses revealed that the data-driven approach using only deep learning has limitations, and the integration of domain knowledge could bring new breakthroughs.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 268
Author(s):  
Yeganeh Jalali ◽  
Mansoor Fateh ◽  
Mohsen Rezvani ◽  
Vahid Abolghasemi ◽  
Mohammad Hossein Anisi

Lung CT image segmentation is a key process in many applications such as lung cancer detection. It is considered a challenging problem due to existing similar image densities in the pulmonary structures, different types of scanners, and scanning protocols. Most of the current semi-automatic segmentation methods rely on human factors therefore it might suffer from lack of accuracy. Another shortcoming of these methods is their high false-positive rate. In recent years, several approaches, based on a deep learning framework, have been effectively applied in medical image segmentation. Among existing deep neural networks, the U-Net has provided great success in this field. In this paper, we propose a deep neural network architecture to perform an automatic lung CT image segmentation process. In the proposed method, several extensive preprocessing techniques are applied to raw CT images. Then, ground truths corresponding to these images are extracted via some morphological operations and manual reforms. Finally, all the prepared images with the corresponding ground truth are fed into a modified U-Net in which the encoder is replaced with a pre-trained ResNet-34 network (referred to as Res BCDU-Net). In the architecture, we employ BConvLSTM (Bidirectional Convolutional Long Short-term Memory)as an advanced integrator module instead of simple traditional concatenators. This is to merge the extracted feature maps of the corresponding contracting path into the previous expansion of the up-convolutional layer. Finally, a densely connected convolutional layer is utilized for the contracting path. The results of our extensive experiments on lung CT images (LIDC-IDRI database) confirm the effectiveness of the proposed method where a dice coefficient index of 97.31% is achieved.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3724
Author(s):  
Quan Zhou ◽  
Mingyue Ding ◽  
Xuming Zhang

Image deblurring has been a challenging ill-posed problem in computer vision. Gaussian blur is a common model for image and signal degradation. The deep learning-based deblurring methods have attracted much attention due to their advantages over the traditional methods relying on hand-designed features. However, the existing deep learning-based deblurring techniques still cannot perform well in restoring the fine details and reconstructing the sharp edges. To address this issue, we have designed an effective end-to-end deep learning-based non-blind image deblurring algorithm. In the proposed method, a multi-stream bottom-top-bottom attention network (MBANet) with the encoder-to-decoder structure is designed to integrate low-level cues and high-level semantic information, which can facilitate extracting image features more effectively and improve the computational efficiency of the network. Moreover, the MBANet adopts a coarse-to-fine multi-scale strategy to process the input images to improve image deblurring performance. Furthermore, the global information-based fusion and reconstruction network is proposed to fuse multi-scale output maps to improve the global spatial information and recurrently refine the output deblurred image. The experiments were done on the public GoPro dataset and the realistic and dynamic scenes (REDS) dataset to evaluate the effectiveness and robustness of the proposed method. The experimental results show that the proposed method generally outperforms some traditional deburring methods and deep learning-based state-of-the-art deblurring methods such as scale-recurrent network (SRN) and denoising prior driven deep neural network (DPDNN) in terms of such quantitative indexes as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) and human vision.


Author(s):  
Jun Yi Li ◽  
Jian Hua Li

As we know, the nearest neighbor search is a good and effective method for good-sized image search. This paper mainly introduced how to learn an outstanding image feature representation form and a series of compact binary Hash coding functions under deep learning framework. Our concept is that binary codes can be obtained using a hidden layer to present some latent concepts dominating the class labels with usable data labels. Our method is effective in obtaining hash codes and image representations, so it is suitable for good-sized dataset. It is demonstrated in our experiment that the performances of the proposed algorithms were then verified on three different databases, MNIST, CIFAR-10 and Caltech-101. The experimental results reveal that two-proposed image Hash retrieval algorithm based on pixel-level automatic feature learning show higher search accuracy than the other algorithms; moreover, these two algorithms were proved to be more favorable in scalability and generality.


2021 ◽  
Author(s):  
Yulong Wang ◽  
Xiaofeng Liao ◽  
Dewen Qiao ◽  
Jiahui Wu

Abstract With the rapid development of modern medical science and technology, medical image classification has become a more and more challenging problem. However, in most traditional classification methods, image feature extraction is difficult, and the accuracy of classifier needs to be improved. Therefore, this paper proposes a high-accuracy medical image classification method based on deep learning, which is called hybrid CQ-SVM. Specifically, we combine the advantages of convolutional neural network (CNN) and support vector machine (SVM), and integrate the novel hybrid model. In our scheme, quantum-behaved particle swarm optimization algorithm (QPSO) is adopted to set its parameters automatically for solving the SVM parameter setting problem, CNN works as a trainable feature extractor and SVM optimized by QPSO performs as a trainable classifier. This method can automatically extract features from original medical images and generate predictions. The experimental results show that this method can extract better medical image features, and achieve higher classification accuracy.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Chuanbao Niu ◽  
Mingzhu Zhang

This paper presents an in-depth study and analysis of the image feature extraction technique for ancient ceramic identification using an algorithm of partial differential equations. Image features of ancient ceramics are closely related to specific raw material selection and process technology, and complete acquisition of image features of ancient ceramics is a prerequisite for achieving image feature identification of ancient ceramics, since the quality of extracted area-grown ancient ceramic image feature extraction method is closely related to the background pixels and does not have generalizability. In this paper, we propose a deep learning-based extraction method, using Eased as a deep learning support platform, to extract and validate 5834 images of 272 types of ancient ceramics from kilns, celadon, and Yue kilns after manual labelling and training learning, and the results show that the average complete extraction rate is higher than 99%. The implementation of the deep learning method is summarized and compared with the traditional region growth extraction method, and the results show that the method is robust with the increase of the learning amount and has generalizability, which is a new method to effectively achieve the complete image feature extraction of ancient ceramics. The main content of the finite difference method is to use the ratio of the difference between the function values of two adjacent points and the distance between the two points to approximate the partial derivative of the function with respect to the variable. This idea was used to turn the problem of division into a problem of difference. Recognition of ancient ceramic image features was realized based on the extraction of the overall image features of ancient ceramics, the extraction and recognition of vessel type features, the quantitative recognition of multidimensional feature fusion ornamentation image features, and the implementation of deep learning based on inscription model recognition image feature classification recognition method; three-layer B/S architecture web application system and cross-platform system language called as the architectural support; and database services, deep learning packaging, and digital image processing. The specific implementation method is based on database service, deep learning encapsulation, digital image processing, and third-party invocation, and the service layer fusion and relearning mechanism is proposed to achieve the preliminary intelligent recognition system of ancient ceramic vessel type and ornament image features. The results of the validation test meet the expectation and verify the effectiveness of the ancient ceramic vessel type and ornament image feature recognition system.


2017 ◽  
Vol 31 (07) ◽  
pp. 1741013
Author(s):  
Juan Zhang ◽  
Wenrong Wu ◽  
Lie Bi

Micro-particle is hard to be observed as small scale and hard to be gripped as micro-force from substrate, an automatic approach and grip method of micro-particle in the guide of microscopic vision systems is proposed in the paper to grip micro-particle. First, the micro-gripper driven by electrostatic force is introduced and forces in gripping process are analyzed. Second, a micro-assembly robot composed of two microscopic vision systems is established to monitor micro-operation process and to operate micro-particle. Image features of micro-particle and micro-gripper end-effector are extracted by image feature extraction method to calculate relative position of micro-particle and micro-gripper in image space. Last, a movement control strategy in 3D space based on image Jacobian matrix is studied to control micro-gripper approach and align with micro-particle. Experimental results verified the effectiveness of proposed methods.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Mingyong Li ◽  
Ziye An ◽  
Qinmin Wei ◽  
Kaiyue Xiang ◽  
Yan Ma

In recent years, with the explosion of multimedia data from search engines, social media, and e-commerce platforms, there is an urgent need for fast retrieval methods for massive big data. Hashing is widely used in large-scale and high-dimensional data search because of its low storage cost and fast query speed. Thanks to the great success of deep learning in many fields, the deep learning method has been introduced into hashing retrieval, and it uses a deep neural network to learn image features and hash codes simultaneously. Compared with the traditional hashing methods, it has better performance. However, existing deep hashing methods have some limitations; for example, most methods consider only one kind of supervised loss, which leads to insufficient utilization of supervised information. To address this issue, we proposed a triplet deep hashing method with joint supervised loss based on the convolutional neural network (JLTDH) in this work. The proposed method JLTDH combines triplet likelihood loss and linear classification loss; moreover, the triplet supervised label is adopted, which contains richer supervised information than that of the pointwise and pairwise labels. At the same time, in order to overcome the cubic increase in the number of triplets and make triplet training more effective, we adopt a novel triplet selection method. The whole process is divided into two stages: In the first stage, taking the triplets generated by the triplet selection method as the input of the CNN, the three CNNs with shared weights are used for image feature learning, and the last layer of the network outputs a preliminary hash code. In the second stage, relying on the hash code of the first stage and the joint loss function, the neural network model is further optimized so that the generated hash code has higher query precision. We perform extensive experiments on the three public benchmark datasets CIFAR-10, NUS-WIDE, and MS-COCO. Experimental results demonstrate that the proposed method outperforms the compared methods, and the method is also superior to all previous deep hashing methods based on the triplet label.


2020 ◽  
Vol 12 (23) ◽  
pp. 3863
Author(s):  
Chenwei Wang ◽  
Jifang Pei ◽  
Zhiyong Wang ◽  
Yulin Huang ◽  
Junjie Wu ◽  
...  

With the recent advances of deep learning, automatic target recognition (ATR) of synthetic aperture radar (SAR) has achieved superior performance. By not being limited to the target category, the SAR ATR system could benefit from the simultaneous extraction of multifarious target attributes. In this paper, we propose a new multi-task learning approach for SAR ATR, which could obtain the accurate category and precise shape of the targets simultaneously. By introducing deep learning theory into multi-task learning, we first propose a novel multi-task deep learning framework with two main structures: encoder and decoder. The encoder is constructed to extract sufficient image features in different scales for the decoder, while the decoder is a tasks-specific structure which employs these extracted features adaptively and optimally to meet the different feature demands of the recognition and segmentation. Therefore, the proposed framework has the ability to achieve superior recognition and segmentation performance. Based on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset, experimental results show the superiority of the proposed framework in terms of recognition and segmentation.


Sign in / Sign up

Export Citation Format

Share Document