Stability Issues in Heterogeneous and FIFO Networks under the Adversarial Queueing Model

Author(s):  
D. K. Koukopoulos ◽  
S. E. Nikoletseas ◽  
Paul G. Spirakis
2005 ◽  
Vol 862 ◽  
Author(s):  
Scott J. Jones ◽  
Joachim Doehler ◽  
Tongyu Liu ◽  
David Tsu ◽  
Jeff Steele ◽  
...  

AbstractNew types of transparent conductive oxides with low indices of refraction have been developed for use in optical stacks for the amorphous silicon (a-Si) solar cell and other thin film applications. The alloys are ZnO based with Si and MgF added to reduce the index of the materials through the creation of SiO2 or MgF2, with n=1.3-1.4, or the addition of voids in the materials. Alloys with 12-14% Si or Mg have indices of refraction at λ=800nm between 1.6 and 1.7. These materials are presently being used in optical stacks to enhance light scattering by Al/multi-layer/ZnO back reflectors in a-Si based solar cells to increase light absorption in the semiconductor layers and increase open circuit currents and boost device efficiencies. In contrast to Ag/ZnO back reflectors which have long term stability issues due to electromigration of Ag, these Al based back reflectors should be stable and usable in manufactured PV products. In this manuscript, structural properties for the materials will be reported as well as the performance of solar cell devices made using these new types of materials.


2012 ◽  
Vol 2 (1) ◽  
pp. 109 ◽  
Author(s):  
T. S. R Murthy ◽  
Sivarama Krishna ◽  
G. V. S Raju
Keyword(s):  

Author(s):  
Neal Master ◽  
Marty I. Reiman ◽  
Can Wang ◽  
Lawrence M. Wein

Author(s):  
Sunny Katyara ◽  
Lukasz Staszewski ◽  
Faheem Akhtar Chachar

Background: Since the distribution networks are passive until Distributed Generation (DG) is not being installed into them, the stability issues occur in the distribution system after the integration of DG. Methods: In order to assure the simplicity during the calculations, many approximations have been proposed for finding the system’s parameters i.e. Voltage, active and reactive powers and load angle, more efficiently and accurately. This research presents an algorithm for finding the Norton’s equivalent model of distribution system with DG, considering from receiving end. Norton’s model of distribution system can be determined either from its complete configuration or through an algorithm using system’s voltage and current profiles. The algorithm involves the determination of derivative of apparent power against the current (dS/dIL) of the system. Results: This work also verifies the accuracy of proposed algorithm according to the relative variations in the phase angle of system’s impedance. This research also considers the varying states of distribution system due to switching in and out of DG and therefore Norton’s model needs to be updated accordingly. Conclusion: The efficacy of the proposed algorithm is verified through MATLAB simulation results under two scenarios, (i) normal condition and (ii) faulty condition. During normal condition, the stability factor near to 1 and change in dS/dIL was near to 0 while during fault condition, the stability factor was higher than 1 and the value of dS/dIL was away from 0.


Sign in / Sign up

Export Citation Format

Share Document