Determining the Norton’s Equivalent Model of Distribution System with Distributed Generation (DG) for Stability Analysis

Author(s):  
Sunny Katyara ◽  
Lukasz Staszewski ◽  
Faheem Akhtar Chachar

Background: Since the distribution networks are passive until Distributed Generation (DG) is not being installed into them, the stability issues occur in the distribution system after the integration of DG. Methods: In order to assure the simplicity during the calculations, many approximations have been proposed for finding the system’s parameters i.e. Voltage, active and reactive powers and load angle, more efficiently and accurately. This research presents an algorithm for finding the Norton’s equivalent model of distribution system with DG, considering from receiving end. Norton’s model of distribution system can be determined either from its complete configuration or through an algorithm using system’s voltage and current profiles. The algorithm involves the determination of derivative of apparent power against the current (dS/dIL) of the system. Results: This work also verifies the accuracy of proposed algorithm according to the relative variations in the phase angle of system’s impedance. This research also considers the varying states of distribution system due to switching in and out of DG and therefore Norton’s model needs to be updated accordingly. Conclusion: The efficacy of the proposed algorithm is verified through MATLAB simulation results under two scenarios, (i) normal condition and (ii) faulty condition. During normal condition, the stability factor near to 1 and change in dS/dIL was near to 0 while during fault condition, the stability factor was higher than 1 and the value of dS/dIL was away from 0.

Author(s):  
Adel M Sharaf ◽  
Khaled Mohamed Abo-Al-Ez

In a deregulated electric service environment, an effective electric transmission and distribution networks are vital to the competitive environment of reliable electric service. Power quality (PQ) is an item of steadily increasing concern in power transmission and distribution. The traditional approach to overcoming capacity and quality limitations in power transmission and distribution in many cases is the addition of new transmission and/or generating capacity. This, however, may not be practicable or desirable in the real case, for many of reasons. From technical, economical and environmental points of view, there are two important - and most of the time combined - alternatives for building new transmission or distribution networks to enhance the transmission system capacity, and power quality: the Flexible alternating current transmission devices and controllers, and the distributed generation resources near the load centers. The connection of distributed generation to the distribution grid may influence the stability of the power system, i.e. angle, frequency and voltage stability. It might also have an impact on the protection selectivity, and the frequency and voltage control in the system. This paper presents a low cost FACTS based Dynamic Distribution System Compensator (DDSC) scheme for voltage stabilization and power transfer and quality enhancement of the distribution feeders connected to a dispersed wind generator, using MATLAB/ SimPower System simulation tool.


2020 ◽  
Vol 31 (2) ◽  
pp. 88-92
Author(s):  
Vladimir Mikhailovich Koldaev ◽  
Artem Yurevich Manyakhin ◽  
Petr Semenovich Zorikov

AbstractThis paper aims at spectrophotometric determination of changes in stability of extractable anthocyanins during drying of plant materials depending on their color. Raw and dried colored parts of 50 plant species from 25 families were used for the study. The extracts were prepared over 95% ethanol acidified with hydrochloric acid (pH ~ 1). The absorption spectra were registered within the range of 210 to 680 nm. The extinction variability factor, coefficient of intensity absorption relative and generalized stability factor were used to determine the anthocyanin degradation. The highest values of the stability factor were obtained for the extracts from fruit shells of burgundy or violet color within the range of 0.934±0.024 to 0.973±0.024, while the extracts from flower petals of the same care featured the stability factor that was 1.19 to 1.44 times less. The values of the stability factor of the extracts from black, red and blue materials are 1.15 to 1.19 times, 1.74 to 2.48 times and 4.65 to 4.84 times less respectively than those of the extracts from violet-burgundy materials. It is appropriate to apply the spectrophotometric factors of anthocyanins stability used in this study to selection of promising plants for industrial cultivation as material of anthocyanin-containing herbal preparations. The most stable anthocyanins are those of burgundy-purple and black fruits.


Author(s):  
Mahesh Kumar ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Pandian Vasant ◽  
Luqman Hakim Rahman

In the distribution system, distributed generation (DG) are getting more important because of the electricity demands, fossil fuel depletion and environment concerns. The placement and sizing of DGs have greatly impact on the voltage stability and losses in the distribution network. In this chapter, a particle swarm optimization (PSO) algorithm has been proposed for optimal placement and sizing of DG to improve voltage stability index in the radial distribution system. The two i.e. active power and combination of active and reactive power types of DGs are proposed to realize the effect of DG integration. A specific analysis has been applied on IEEE 33 bus system radial distribution networks using MATLAB 2015a software.


2019 ◽  
Vol 9 (17) ◽  
pp. 3501 ◽  
Author(s):  
Vasiliki Vita ◽  
Stavros Lazarou ◽  
Christos A. Christodoulou ◽  
George Seritan

This paper proposes a calculation algorithm that creates operational points and evaluates the performance of distribution lines after reinforcement. The operational points of the line are probabilistically determined using Monte Carlo simulation for several objective functions for a given line. It is assumed that minimum voltage at all nodes has to be balanced to the maximum load served under variable distributed generation production, and to the energy produced from the intermittent renewables. The calculated maximum load, which is higher than the current load, is expected to cover the expected needs for electric vehicles charging. Following the proposed operational patterns, it is possible to have always maximum line capacity. This method is able to offer several benefits. It facilitates of network planning and the estimation of network robustness. It can be used as a tool for network planners, operators and large users. It applies to any type of network including radial and meshed.


2013 ◽  
Vol 768 ◽  
pp. 313-316
Author(s):  
P. Sivakumar ◽  
C. Birindha

Distribution system is facing stability issues with integration of distributed generators and controllers. This proposed method presents the stability of renewable energy based distribution system with varying energy source considering intermittent nature of wind and solar energy using probabilistic approach. The system is supplied by conventional and distributed generating sources like PV and wind. Monte Carlo approach is used for predicting the wind and solar power uncertainties. Proposed work explains both small signal stability and transient stability enhancement of DG sourced power system with power system stabilizer and automatic voltage regulator .It is carried out in is 4 machine 10 bus system. The initial simulation has been carried out using MATLAB/SIMULINK.


2014 ◽  
Vol 668-669 ◽  
pp. 749-752 ◽  
Author(s):  
Xiao Yi Zhou ◽  
Ling Yun Wang ◽  
Wen Yue Liang ◽  
Li Zhou

Distributed generation (DG) has an important influence on the voltage of active distribution networks. A unidirectional power distribution network will be transformed into a bidirectional, multiple power supply distribution network after DGs access to the distribution network and the direction of power flow is also changed. Considering the traditional forward and backward substitution algorithm can only deal with the equilibrium node and PQ nodes, so the other types of DGs should be transformed into PQ nodes, then its impact on active distribution network can be analyzed via the forward and backward substitution algorithm. In this paper, the characteristics of active distribution networks are analyzed firstly and a novel approach is proposed to convert PI nodes into PQ nodes. Finally, a novel forward and backward substitution algorithm is adopted to calculate the power flow of the active distribution network with DGs. Extensive validation of IEEE 18 and 33 nodes distribution system indicates that this method is feasible. Numerical results show that when DG is accessed to the appropriate location with proper capacity, it has a significant capability to support the voltages level of distribution system.


Author(s):  
Sunny Katyara ◽  
Lukasz Staszewski ◽  
Zbigniew Leonowicz

The radial distribution networks are designed for unidirectional power flows and are passive in nature. However, with the penetration of Distributed Generation (DG), the power flow becomes bidirectional and the network becomes active. The integration of DGs into distribution network creates many issues with: system stability, protection coordination, power quality, islanding, proper placement and sizing etc. Among these issues, the two most significant are optimal sizing and placement of DGs and their protection coordination in utility network. The proper coordination of relays with high penetration of DGs placed at optimal location increases the availability and reliability of the network during abnormal operating conditions.This research addresses most of the available methods for efficient sizing and placement of DGs in distribution system (numerical, analytical and heuristic) as well as the developed protection coordination techniques for utility networks in the presence of DGs (Artificial Intelligence (AI), adaptive and non-adaptive, multi-agent, hybrid). This paper indicates the possible research gaps and highlights the applications possibilities and methods’ limitations in the area of DGs.


2021 ◽  
Author(s):  
Alexander Hamlyn

To take on the challenge for improving the distribution system voltage stability, this thesis research carried out an extensive study of the stability issues and available technology dealing with the stability problems. Load shedding, Load reduction through transformer tap changing, reactive power compensation, and DG control are investigated in detail. The new strategies proposed, and formulations presented, in this thesis research, are designed for carrying out the corrective actions against voltage instability with a great degree of feasability to achieve optimal operations. A new concept of composite power was developed in this thesis research, for prediction of the trend of voltage stability, and a novel prediction of voltage stability and consequently determination of corrective actions was formulated. A detailed hardware/software based development of the algorithm and strategy for voltage stability enhancement was presented. A detailed set of case studies for verification of the voltage stability enhancement was developed.


Author(s):  
Subramanya Sarma S ◽  
V. Madhusudhan ◽  
V. Ganesh

<p>Reliability worth assessment is a primary concern in planning and designing of electrical distribution systems those operate in an economic manner with minimal interruption of electric supply to customer loads. Renewable energy sources (RES) based Distributed Generation (DG) units can be forecasted to penetrate in distribution networks due to advancement in their technology. The assessment of reliability worth of DG enhanced distribution networks is a relatively new research area. This paper proposes a methodology that can be used to analyze the reliability of active distribution systems (DG enhanced distribution system) and can be applied in preliminary planning studies to compute the reliability indices and statistics. The reliability assessment in this work is carried out with analytical approach applied on a test system and simulated results validate that installation of distributed generators can improve the distribution system reliability considerably.</p>


Sign in / Sign up

Export Citation Format

Share Document