Information Fusion for Intelligent Agent-Based Information Gathering

Author(s):  
Yuefeng Li
Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 681
Author(s):  
László Barna Iantovics

Current machine intelligence metrics rely on a different philosophy, hindering their effective comparison. There is no standardization of what is machine intelligence and what should be measured to quantify it. In this study, we investigate the measurement of intelligence from the viewpoint of real-life difficult-problem-solving abilities, and we highlight the importance of being able to make accurate and robust comparisons between multiple cooperative multiagent systems (CMASs) using a novel metric. A recent metric presented in the scientific literature, called MetrIntPair, is capable of comparing the intelligence of only two CMASs at an application. In this paper, we propose a generalization of that metric called MetrIntPairII. MetrIntPairII is based on pairwise problem-solving intelligence comparisons (for the same problem, the problem-solving intelligence of the studied CMASs is evaluated experimentally in pairs). The pairwise intelligence comparison is proposed to decrease the necessary number of experimental intelligence measurements. MetrIntPairII has the same properties as MetrIntPair, with the main advantage that it can be applied to any number of CMASs conserving the accuracy of the comparison, while it exhibits enhanced robustness. An important property of the proposed metric is the universality, as it can be applied as a black-box method to intelligent agent-based systems (IABSs) generally, not depending on the aspect of IABS architecture. To demonstrate the effectiveness of the MetrIntPairII metric, we provide a representative experimental study, comparing the intelligence of several CMASs composed of agents specialized in solving an NP-hard problem.


2009 ◽  
Vol 36 (2) ◽  
pp. 3167-3187 ◽  
Author(s):  
Francisco García-Sánchez ◽  
Rafael Valencia-García ◽  
Rodrigo Martínez-Béjar ◽  
Jesualdo T. Fernández-Breis

Author(s):  
ELHADI SHAKSHUKI ◽  
HAMADA GHENNIWA ◽  
MAHAMED KAMEL

The rapid growth of the network-centered (Internet and Intranet) computing environments requires new architectures for information gathering systems. Typically, in these environments, the information resources are dynamic, heterogeneous and distributed. In addition, these computing environments are open, where information resources may be connected or disconnected at any time. This paper presents an architecture for a multi-agent information gathering system. The architecture includes three types of agents: interface, broker and resource agents. The interface agents interact with the users to fulfill their interests and preferences. The resource agents access and capture the content of the information resources. The broker agents facilitate cooperation among the information and the resource agents to achieve their desired goals. This paper provides the agents' architecture, design and implementations that enable them to cooperate, coordinate and communicate with each other to gather information in an open and dynamic environment.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
S. Ganapathy ◽  
P. Yogesh ◽  
A. Kannan

Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set.


Sign in / Sign up

Export Citation Format

Share Document