Mutual Dynamics of Swimming Microorganisms and Their Fluid Habitat

Author(s):  
John O. Kessler ◽  
G. David Burnett ◽  
Katherine E. Remick
2021 ◽  
Author(s):  
Jamie J.M. Lustermans ◽  
Jesper Jensen Bjerg ◽  
Andreas Schramm ◽  
Ian P.G. Marshall

Abstract Microaerophilic veils of swimming microorganisms form at oxic-anoxic interfaces, most commonly described in sediments where sulfide diffusing out from below meets oxygen diffusing in from the water phase. However, distinctive microaerophilic veils form even when there is a gap between the sulfide and O2 fronts, i.e., a suboxic zone, and suggest that the organisms inhabiting these veils can use electron donors other than sulfide. Suboxic zones are found for example in sediment where cable bacteria spatially separate sulfide and O2 by up to several centimetres. Here we describe the extraction of microorganisms from a microaerophilic veil that formed in cable-bacteria-enriched freshwater sediment using a glass capillary, and the subsequent isolation of a motile, microaerophilic, organoheterotrophic bacterium, strain R2-JLT, unable to oxidize sulfide. Based on phenotypic, phylogenetic, and genomic comparison, we propose strain R2-JLT as a novel Phyllobacterium species, P. calauticae sp. nov.. The type strain is R2-JLT (=LMG 32286T =DSM 112555T). This novel isolate confirms that a wider variety of electron donors, including organic compounds, can fuel the activity of microorganisms in microaerophilic veils.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (13) ◽  
pp. 2177-2182 ◽  
Author(s):  
Zhou Ye ◽  
Metin Sitti

Non-contact, selective and dynamic trapping and transportation of motile microorganisms using locally induced flows with minimal damage.


1952 ◽  
Vol 86 (830) ◽  
pp. 325-329 ◽  
Author(s):  
John B. Loefer ◽  
Roy B. Mefferd,

Author(s):  
Laura Leal-Taixé ◽  
Matthias Heydt ◽  
Sebastian Weiße ◽  
Axel Rosenhahn ◽  
Bodo Rosenhahn

Sign in / Sign up

Export Citation Format

Share Document