Featuring the radiative transmission of energy in viscoelastic nanofluid with swimming microorganisms

Author(s):  
Rahila Naz
2021 ◽  
Author(s):  
Jamie J.M. Lustermans ◽  
Jesper Jensen Bjerg ◽  
Andreas Schramm ◽  
Ian P.G. Marshall

Abstract Microaerophilic veils of swimming microorganisms form at oxic-anoxic interfaces, most commonly described in sediments where sulfide diffusing out from below meets oxygen diffusing in from the water phase. However, distinctive microaerophilic veils form even when there is a gap between the sulfide and O2 fronts, i.e., a suboxic zone, and suggest that the organisms inhabiting these veils can use electron donors other than sulfide. Suboxic zones are found for example in sediment where cable bacteria spatially separate sulfide and O2 by up to several centimetres. Here we describe the extraction of microorganisms from a microaerophilic veil that formed in cable-bacteria-enriched freshwater sediment using a glass capillary, and the subsequent isolation of a motile, microaerophilic, organoheterotrophic bacterium, strain R2-JLT, unable to oxidize sulfide. Based on phenotypic, phylogenetic, and genomic comparison, we propose strain R2-JLT as a novel Phyllobacterium species, P. calauticae sp. nov.. The type strain is R2-JLT (=LMG 32286T =DSM 112555T). This novel isolate confirms that a wider variety of electron donors, including organic compounds, can fuel the activity of microorganisms in microaerophilic veils.


2021 ◽  
Author(s):  
Haroon Ur Rasheed ◽  
Saeed Islam ◽  
Zeeshan Khan ◽  
Waris Khan

Abstract This article aims to explore the mathematical and computational communication of transverse magnetic field interaction to stagnation point viscoelastic nanofluid flow over convectively heated stretching surface accompanied with a heat source, magnetohydrodynamics, and viscous dissipation. The mathematical framework is established for mass conservation, momentum, energy conservation, and concentration of nanoparticles is implemented. The constitutive nonlinear partial differential flow expressions are reduced by utilizing compatible similarity transformations. The non-dimensionless flow laws of (PDEs) are changed into nonlinear dimensionless governing ordinary differential flow laws and then the bvph2 numerical technique is employed for its solution. The consequences of innumerable governing flow parameters are explicitly deliberated and plotted graphically. The physical such as drag force and heat transfer rate are taken into the account and evaluated accordingly. To confirmed the legitimacy and reliability of the upcoming numerical results were compared with homotopic solution (HAM) and an outstanding promise was perceived.


2016 ◽  
Vol 78 (12-3) ◽  
Author(s):  
Norazuwin Najihah Mat Tahir ◽  
Fuziyah Ishak ◽  
Seripah Awang Kechil

Nanofluids have been shown experimentally to have high thermal conductivity. In this study, the convective instabilities in a horizontal viscoelastic nanofluid saturated by porous layer under the influences of gravity and magnetic field are investigated. The linear stability theory is used for the transformation of the partial differential equations to system of ordinary differential equations through infinitesimal perturbations, scaling, linearization and method of normal modes with two-dimensional periodic waves. The system is solved analytically for the closed form solution of the thermal Darcy-Rayleigh number by using the Galerkin-type weighted residuals method to investigate the onset of both stationary and oscillatory convection. The effects of the scaled stress relaxation parameter, scaled strain retardation parameter and Chandrasekhar number on the stability of the system are investigated. The scaled strain retardation parameter stabilizes while the scaled stress relaxation parameter destabilizes the nanofluid system. The system in the presence of magnetic field is more stable than the system in the absence of magnetic field. 


Sign in / Sign up

Export Citation Format

Share Document