scholarly journals A Quadruped Robot for RoboCup Legged Robot Challenge in Paris ’98

Author(s):  
Masahiro Fujita ◽  
Stephane Zrehen ◽  
Hiroaki Kitano
Keyword(s):  

2017 ◽  
Vol 29 (3) ◽  
pp. 536-545
Author(s):  
Masahiro Ikeda ◽  
◽  
Ikuo Mizuuchi

[abstFig src='/00290003/09.jpg' width='300' text='Energy flow in legged robot' ] As a method of robot movement, legs have the advantage of traversability on rough terrain. However, the motion of a legged robot is accompanied by energy loss. The main causes for this loss could be negative work and contact between the legs and ground. On the other hand, animals with legs are considered to reduce energy loss by using the elasticity of their body. In this study, we analyze the influence of walking, using an elastic passive joint mounted on the trunk of a quadruped robot, on the energy loss. Additionally, we study the energy flow between legs and elastic components. In this study, we clarify a control method for quadruped robots in order to reduce the energy loss of walking. The results of simulating a quadruped walking robot, which has passive joints with elastic components on the trunk, are analyzed and the relationship between each kind of energy loss and the trunk joint’s elasticity is clarified.



2021 ◽  
Author(s):  
Harn Sison ◽  
Photchara Ratsamee ◽  
Manabu Higashida ◽  
Yuki Uranashi ◽  
Takemura Haruo

Abstract In this paper, we propose a design and an implementation of spherical magnet joint (SMJ) - based gait generation for inverted locomotion of multi-legged robots. A spherical permanent magnet is selected to generate a consistent attractive force for the robot to perform inverted locomotion under steel structures. Additionally, the tip of the robot's foot is designed as a ball-joint mechanism to give flexibility to the foot placement at any angle between the tip and surfaces. We also propose an adjustable sleeve mechanism to detach the tip of the foot during locomotion by creating a fulcrum point during the tilt and pull step. As a result, the reaction force can be reduced according to sleeve diameter. Experimental results show that the presented load decreased by 46% from direct pulling with the adjustable sleeve mechanism. For inverted locomotion, a quadruped robot and a hexapod robot were constructed to represent the predominant type of multi-legged robot. We integrated the SMJ and the adjustable sleeve on both robots and performed the inverted locomotion with a crawling gait, a trotting gait, a square gait, and a tripod gait. Our analysis demonstrates the characteristics of each gait in terms of velocity, stability, guaranteeing the versatility of our proposed SMJ, which can be applied to different types of legged robots.



2019 ◽  
Vol 14 (2) ◽  
pp. 93-106
Author(s):  
Firas A. Raheem ◽  
Murtadha Khudhair Flayyih

A quadruped (four-legged) robot locomotion has the potential ability for using in different applications such as walking over soft and rough terrains and to grantee the mobility and flexibility. In general, quadruped robots have three main periodic gaits:  creeping gait, running gait and galloping gait. The main problem of the quadruped robot during walking is the needing to be statically stable for slow gaits such as creeping gait. The statically stable walking as a condition depends on the stability margins that calculated particularly for this gait. In this paper, the creeping gait sequence analysis of each leg step during the swing and fixed phases has been carried out. The calculation of the minimum stability margins depends upon the forward and inverse kinematic models for each 3-DOF leg and depends on vertical geometrical projection during walking. Simulation and results verify the stability insurance after calculation the minimum margins which indicate clearly the robot COG (Center of Gravity) inside the supporting polygon resulted from the leg-tips.



Author(s):  
Xinghua Tian ◽  
Feng Gao ◽  
Chenkun Qi ◽  
Xianbao Chen

Interactions between feet and environment influence the stability and mobility of legged robot. This paper proposes a model to indirectly identify 3 degrees of freedom feet reaction forces for a quadruped robot with parallel-serial legs. The research platform is called Baby-Elephant: a heavy-duty four-legged robot designed for nuclear plant maintenance and disaster relief purposes. Each leg has three hydraulic actuators. With the pressure data from pump and hydraulic actuators, a double-chamber model with experimental derived friction is used to obtain the actuated force. The reaction forces model, including joint and foot forces, is simplified into an explicit function. Comparison between CAD simulation and analytical results shows the effectiveness of the model. A walking experiment with load cells proves the model is validate in practical application. The proposed model is used to identify the foot contact phase and the zero momentum point during crawling gait walking.



2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Shunsuke Nansai ◽  
Rajesh Elara Mohan ◽  
Ning Tan ◽  
Nicolas Rojas ◽  
Masami Iwase

The Theo Jansen mechanism is gaining widespread popularity among the legged robotics community due to its scalable design, energy efficiency, low payload-to-machine-load ratio, bioinspired locomotion, and deterministic foot trajectory. In this paper, we perform for the first time the dynamic modeling and analysis on a four-legged robot driven by a single actuator and composed of Theo Jansen mechanisms. The projection method is applied to derive the equations of motion of this complex mechanical system and a position control strategy based on energy is proposed. Numerical simulations validate the efficacy of the designed controller, thus setting a theoretical basis for further investigations on Theo Jansen based quadruped robots.



SIGMA TEKNIKA ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 20
Author(s):  
Endang Susanti
Keyword(s):  

Robot adalah alat mekanik yang dapat melakukan tugas fisik baik melalui kontrol manusia maupun secara otomatis.. Salah satu contoh yaitu robot quadruped. Robot quadruped merupakan robot yang menirukan anatomi dari laba-laba dalam proses geraknya. Pada perancangan robot quadruped menggunakan module bluetooth hc 05 sebagai pengontrol geraknya yang disingkronkan dengan smartphone sebagai remote controlnya. Robot quadruped juga ditambahkan pengaman berupa sensor utrasonik apabila terputusnya koneksi smarphone dengan robot quadruped, sensor utrasonik mengambil peranan untuk menghindari halagan agar tidak terjadi kerusakan pada robot. Jarak maksimal dari module Bluetooth 10 meter, kettika lebih dari 10 meter, koneksi akan terputus dan tidak dapat tekoneksi kembali Kata kunci: Teknologi, robot, quadruped, module bluetooth, sensor ultrasonik.



2013 ◽  
Vol 133 (3) ◽  
pp. 663-671
Author(s):  
Hiroshi Hirata ◽  
Yorinao Mizushima ◽  
Shigeto Ouchi ◽  
Nariyuki Kodani


Sign in / Sign up

Export Citation Format

Share Document