System Description: MathWeb, an Agent-Based Communication Layer for Distributed Automated Theorem Proving

Author(s):  
Andreas Franke ◽  
Michael Kohlhase
10.29007/jj86 ◽  
2018 ◽  
Author(s):  
Djihed Afifi ◽  
David Rydeheard ◽  
Howard Barringer

We present a novel application of automated theorem proving for the simulation of computational systems. The computational systems we consider are evolvable, i.e. may reconfigure their structure and programs at run-time. In [1], a logical framework for describing such systems is introduced. The underlying logic of this framework allows us to build a simulation engine for executing system specifications. This engine makes intensive use of automated theorem proving – when running a simulation, almost all computational steps are those of a theorem prover. In this paper, we present this novel combination of a logical setting involving meta-level logics and large sets of formulae for system description, together with theorem proving requirements which involve often slowly changing specifications with the need for rapid assessment of deducibility and consistency. We will evaluate the suitability of several theorem provers for this application.


2021 ◽  
pp. 1-15
Author(s):  
Geoff Sutcliffe

The CADE ATP System Competition (CASC) is the annual evaluation of fully automatic, classical logic Automated Theorem Proving (ATP) systems. CASC-J10 was the twenty-fifth competition in the CASC series. Twenty-four ATP systems and system variants competed in the various competition divisions. This paper presents an outline of the competition design, and a commentated summary of the results.


1993 ◽  
Vol 19 (3-4) ◽  
pp. 275-301
Author(s):  
Andrzej Biela

In this paper we shall introduce a formal system of algorithmic logic which enables us to formulate some problems connected with a retrieval system which provides a comprehensive tool in automated theorem proving of theorems consisting of programs, procedures and functions. The procedures and functions may occur in considered theorems while the program of the above mentioned system is being executed. We can get an answer whether some relations defined by programs hold and we can prove functional equations in a dynamic way by looking for a special set of axioms /assumptions/ during the execution of system. We formulate RS-algorithm which enables us to construct the set of axioms for proving some properties of functions and relations defined by programs. By RS-algorithm we get the dynamic process of proving functional equations and we can answer the question whether some relations defined by programs hold. It enables us to solve some problems concerning the correctness of programs. This system can be used for giving an expert appraisement. We shall provide the major structures and a sketch of an implementation of the above formal system.


2013 ◽  
Vol 14 (1) ◽  
pp. 101-119 ◽  
Author(s):  
Mélanie Jacquel ◽  
Karim Berkani ◽  
David Delahaye ◽  
Catherine Dubois

Sign in / Sign up

Export Citation Format

Share Document